
MATLAB® Coder™

User’s Guide

R2013b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Coder™ User’s Guide

© COPYRIGHT 2011–2013 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Revision History
April 2011 Online only New for Version 2 (R2011a)
September 2011 Online only Revised for Version 2.1 (Release 2011b)
March 2012 Online only Revised for Version 2.2 (Release 2012a)
September 2012 Online only Revised for Version 2.3 (Release 2012b)
March 2013 Online only Revised for Version 2.4 (Release 2013a)
September 2013 Online only Revised for Version 2.5 (Release 2013b)

Check Bug Reports for Issues and Fixes

Software is inherently complex and is not free of errors. The output of a code generator
might contain bugs, some of which are not detected by a compiler. MathWorks
reports critical known bugs brought to its attention on its Bug Report system at
www.mathworks.com/support/bugreports/. Use the Saved Searches and Watched Bugs tool
with the search phrase ‘‘Incorrect Code Generation’’ to obtain a report of known bugs that
produce code that might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release. Examine
periodically all bug reports for a release, as such reports may identify inconsistencies between
the actual behavior of a release you are using and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and validation
strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Contents

About MATLAB Coder

1
MATLAB Coder Product Description 1-2
Key Features . 1-2

Product Overview . 1-3
When to Use MATLAB Coder . 1-3
Code Generation for Embedded Software Applications . . . 1-3
Code Generation for Fixed-Point Algorithms 1-4

Code Generation Workflow . 1-5
See Also . 1-5

Design Considerations for C/C++ Code
Generation

2
When to Generate Code from MATLAB Algorithms . . . 2-2
When Not to Generate Code from MATLAB Algorithms . . 2-2

Which Code Generation Feature to Use 2-4

Prerequisites for C/C++ Code Generation from
MATLAB . 2-5

MATLAB Code Design Considerations for Code
Generation . 2-6
See Also . 2-7

Expected Differences in Behavior After Compiling
MATLAB Code . 2-8

v

Why Are There Differences? . 2-8
Character Size . 2-8
Order of Evaluation in Expressions 2-8
Termination Behavior . 2-9
Size of Variable-Size N-D Arrays . 2-9
Size of Empty Arrays . 2-10
Floating-Point Numerical Results . 2-10
NaN and Infinity Patterns . 2-11
Code Generation Target . 2-11
MATLAB Class Initial Values . 2-11
Variable-Size Support for Code Generation 2-11

MATLAB Language Features Supported for C/C++ Code
Generation . 2-12
MATLAB Language Features Not Supported for C/C++
Code Generation . 2-13

System Objects Supported for Code Generation

3
System Objects Supported for C/C++ Code
Generation . 3-2
Code Generation for System Objects 3-2
Computer Vision System Toolbox System Objects 3-2
Communications System Toolbox System Objects 3-7
DSP System Toolbox System Objects 3-13
Phased Array System Toolbox System Objects 3-19
Image Acquisition Toolbox System Objects 3-23

Functions Supported for Code Generation

4
Functions Supported for C/C++ Code Generation —
Alphabetical List . 4-2

vi Contents

Functions Supported for C/C++ Code Generation —
Categorical List . 4-88
Aerospace Toolbox Functions . 4-89
Arithmetic Operator Functions . 4-90
Bit-Wise Operation Functions . 4-90
Casting Functions . 4-91
Communications System Toolbox Functions 4-91
Complex Number Functions . 4-91
Computer Vision System Toolbox Functions 4-92
Data and File Management Functions 4-94
Data Type Functions . 4-94
Derivative and Integral Functions . 4-95
Discrete Math Functions . 4-95
Error Handling Functions . 4-96
Exponential Functions . 4-96
Filtering and Convolution Functions 4-97
Fixed-Point Designer Functions . 4-97
Histogram Functions . 4-106
Image Processing Toolbox Functions 4-106
Input and Output Functions . 4-108
Interpolation and Computational Geometry Functions . . . 4-109
Linear Algebra . 4-109
Logical Operator Functions . 4-109
MATLAB Compiler Functions . 4-110
MATLAB Desktop Environment Functions 4-110
Matrix and Array Functions . 4-110
Nonlinear Numerical Methods . 4-114
Phased Array System Toolbox Functions 4-115
Polynomial Functions . 4-118
Programming Utilities . 4-118
Relational Operator Functions . 4-118
Rounding and Remainder Functions 4-119
Set Functions . 4-119
Signal Processing Functions in MATLAB 4-120
Signal Processing Toolbox Functions 4-120
Special Values . 4-125
Specialized Math . 4-125
Statistical Functions . 4-126
Statistics Toolbox Functions . 4-126
String Functions . 4-132
Structure Functions . 4-133
Trigonometric Functions . 4-133

vii

Defining MATLAB Variables for C/C++ Code
Generation

5
Variables Definition for Code Generation 5-2

Best Practices for Defining Variables for C/C++ Code
Generation . 5-3
Define Variables By Assignment Before Using Them 5-3
Use Caution When Reassigning Variables 5-6
Use Type Cast Operators in Variable Definitions 5-6
Define Matrices Before Assigning Indexed Variables 5-6

Eliminate Redundant Copies of Variables in Generated
Code . 5-7
When Redundant Copies Occur . 5-7
How to Eliminate Redundant Copies by Defining
Uninitialized Variables . 5-7

Defining Uninitialized Variables . 5-8

Reassignment of Variable Properties 5-9

Define and Initialize Persistent Variables 5-10

Reuse the Same Variable with Different Properties . . . 5-11
When You Can Reuse the Same Variable with Different
Properties . 5-11

When You Cannot Reuse Variables 5-12
Limitations of Variable Reuse . 5-14

Avoid Overflows in for-Loops . 5-16

Supported Variable Types . 5-18

viii Contents

Defining Data for Code Generation

6
Data Definition for Code Generation 6-2

Code Generation for Complex Data 6-4
Restrictions When Defining Complex Variables 6-4
Expressions With Complex Operands Yield Complex
Results . 6-5

Code Generation for Characters . 6-7

Code Generation for Variable-Size Data

7
What Is Variable-Size Data? . 7-2

Variable-Size Data Definition for Code Generation . . . 7-3

Bounded Versus Unbounded Variable-Size Data 7-4

Control Memory Allocation of Variable-Size Data 7-5

Specify Variable-Size Data Without Dynamic Memory
Allocation . 7-6
Fixing Upper Bounds Errors . 7-6
Specifying Upper Bounds for Variable-Size Data 7-6

Variable-Size Data in Code Generation Reports 7-10
What Reports Tell You About Size . 7-10
How Size Appears in Code Generation Reports 7-11
How to Generate a Code Generation Report 7-11

Define Variable-Size Data for Code Generation 7-12
When to Define Variable-Size Data Explicitly 7-12

ix

Using a Matrix Constructor with Nonconstant
Dimensions . 7-13

Inferring Variable Size from Multiple Assignments 7-13
Defining Variable-Size Data Explicitly Using
coder.varsize . 7-15

C Code Interface for Arrays . 7-19
C Code Interface for Statically Allocated Arrays 7-19
C Code Interface for Dynamically Allocated Arrays 7-20
Utility Functions for Creating emxArray Data
Structures . 7-21

Diagnose and Fix Variable-Size Data Errors 7-23
Diagnosing and Fixing Size Mismatch Errors 7-23
Diagnosing and Fixing Errors in Detecting Upper
Bounds . 7-25

Incompatibilities with MATLAB in Variable-Size
Support for Code Generation . 7-27
Incompatibility with MATLAB for Scalar Expansion 7-27
Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays . 7-29

Incompatibility with MATLAB in Determining Size of
Empty Arrays . 7-30

Incompatibility with MATLAB in Determining Class of
Empty Arrays . 7-31

Incompatibility with MATLAB in Vector-Vector
Indexing . 7-32

Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation 7-33

Incompatibility with MATLAB in Concatenating
Variable-Size Matrices . 7-34

Dynamic Memory Allocation Not Supported for MATLAB
Function Blocks . 7-35

Restrictions on Variable Sizing in Toolbox Functions
Supported for Code Generation 7-36
Common Restrictions . 7-36
Toolbox Functions with Variable Sizing Restrictions 7-37

x Contents

Code Generation for MATLAB Structures

8
Structure Definition for Code Generation 8-2

Structure Operations Allowed for Code Generation . . . 8-3

Define Scalar Structures for Code Generation 8-4
Restriction When Using struct . 8-4
Restrictions When Defining Scalar Structures by
Assignment . 8-4

Adding Fields in Consistent Order on Each Control Flow
Path . 8-4

Restriction on Adding New Fields After First Use 8-5

Define Arrays of Structures for Code Generation 8-7
Ensuring Consistency of Fields . 8-7
Using repmat to Define an Array of Structures with
Consistent Field Properties . 8-7

Defining an Array of Structures Using Concatenation 8-8

Make Structures Persistent . 8-9

Index Substructures and Fields . 8-10

Assign Values to Structures and Fields 8-12

Pass Large Structures as Input Parameters 8-14

Code Generation for Enumerated Data

9
Enumerated Data Definition for Code Generation 9-2

Enumerated Types Supported for Code Generation . . . 9-3
Enumerated Type Based on int32 . 9-3

xi

When to Use Enumerated Data for Code Generation . . 9-5

Generate Code for Enumerated Data from MATLAB
Algorithms . 9-6
How to Generate Code for Enumerated Data 9-6

Define Enumerated Data for Code Generation 9-8
Naming Enumerated Types for Code Generation 9-9

Instantiate Enumerated Types for Code Generation . . 9-10

Operations on Enumerated Data Allowed for Code
Generation . 9-11
Assignment Operator, = . 9-11
Relational Operators, < > <= >= == ~= 9-11
Cast Operation . 9-12
Indexing Operation . 9-12
Control Flow Statements: if, switch, while 9-13

Include Enumerated Data in Control Flow
Statements . 9-14
if Statement with Enumerated Data Types 9-14
switch Statement with Enumerated Data Types 9-15
while Statement with Enumerated Data Types 9-18

Customize Enumerated Types Based on int32 9-20
About Customizing Enumerated Types 9-20
Specify a Default Enumerated Value 9-22
Specify a Header File . 9-23

Control Names of Enumerated Type Values in
Generated Code . 9-26

Change and Reload Enumerated Data Types 9-28

Restrictions on Use of Enumerated Data in
for-Loops . 9-29

xii Contents

Toolbox Functions That Support Enumerated Types for
Code Generation . 9-30

Code Generation for MATLAB Classes

10
MATLAB Classes Definition for Code Generation 10-2
Language Limitations . 10-2
Code Generation Features Not Compatible with Classes . . 10-3
Defining Class Properties for Code Generation 10-4
Calls to Base Class Constructor . 10-6

Classes That Support Code Generation 10-8

Generate Code for MATLAB Value Classes 10-9

Generate Code for MATLAB Handle Classes and System
Objects . 10-15

MATLAB Classes in Code Generation Reports 10-18
What Reports Tell You About Classes 10-18
How Classes Appear in Code Generation Reports 10-18
How to Generate a Code Generation Report 10-20

Troubleshooting Issues with MATLAB Classes 10-21
Class class does not have a property with name name . . . 10-21

Code Generation for Function Handles

11
Function Handle Definition for Code Generation 11-2

Define and Pass Function Handles for Code
Generation . 11-3

xiii

Function Handle Limitations for Code Generation . . . 11-5

Defining Functions for Code Generation

12
Specify Variable Numbers of Arguments 12-2

Supported Index Expressions . 12-3

Apply Operations to a Variable Number of
Arguments . 12-4
When to Force Loop Unrolling . 12-4
Using Variable Numbers of Arguments in a for-Loop 12-5

Implement Wrapper Functions . 12-7
Passing Variable Numbers of Arguments from One
Function to Another . 12-7

Pass Property/Value Pairs . 12-8

Variable Length Argument Lists for Code
Generation . 12-10

Calling Functions for Code Generation

13
Resolution of Function Calls in MATLAB Generated
Code . 13-2
Key Points About Resolving Function Calls 13-4
Compile Path Search Order . 13-4
When to Use the Code Generation Path 13-5

Resolution of File Types on Code Generation Path . . . 13-6

xiv Contents

Compilation Directive %#codegen 13-8

Call Local Functions . 13-9

Call Supported Toolbox Functions 13-10

Call MATLAB Functions . 13-11
Declaring MATLAB Functions as Extrinsic Functions . . . 13-12
Calling MATLAB Functions Using feval 13-16
How MATLAB Resolves Extrinsic Functions During
Simulation . 13-16

Working with mxArrays . 13-17
Restrictions on Extrinsic Functions for Code Generation . . 13-19
Limit on Function Arguments . 13-19

Fixed-Point Conversion

14
Convert MATLAB Code to Fixed-Point C Code 14-2

Propose Fixed-Point Data Types Based on Simulation
Ranges . 14-3

Propose Fixed-Point Data Types Based on Derived
Ranges . 14-21

Specify Type Proposal Options . 14-36

Log Data for Histogram . 14-39

View and Modify Variable Information 14-42
View Variable Information . 14-42
Modify Variable Information . 14-42
Revert Changes . 14-44
Promote Sim Min and Sim Max Values 14-45

xv

Build Instrumented MEX Function 14-46

Propose Fixed-Point Data Types . 14-47

Apply Fixed-Point Data Types . 14-57

Modify Data Type Proposal Settings 14-63

Modify Instrumentation Report Settings 14-67

Automated Fixed-Point Conversion 14-68
License Requirements . 14-68
Fixed-Point Conversion Capabilities 14-68
Code Coverage . 14-70
Proposing Data Types . 14-74
Viewing Functions . 14-76
Viewing Variables . 14-76
Histogram . 14-77
Function Replacements . 14-79
Validating Types . 14-79
Testing Numerics . 14-79

Instrumented MEX Functions . 14-81
Generating Instrumented MEX Functions 14-81
Merging Instrumentation Results . 14-81
Clearing Instrumentation Results . 14-82
Redirecting Entry-Point Calls to MEX Function 14-82
Proposing Fraction Lengths . 14-82
Proposing Word Lengths . 14-82

Convert Floating-Point MATLAB Code to Fixed-Point C
Code Using codegen . 14-84

Bug Reports

15
Check Bug Reports for Issues and Fixes 15-2

xvi Contents

Setting Up a MATLAB Coder Project

16
MATLAB Coder Project Set Up Workflow 16-2

Creating a New Project . 16-3
From the MATLAB APPS Tab . 16-3
At the Command Line . 16-3
From a MATLAB Coder Project . 16-4

Opening an Existing Project . 16-5
From the MATLAB APPS Tab . 16-5
At the Command Line . 16-5
From a MATLAB Coder Project . 16-5

Adding Files to the Project . 16-6

Specifying Properties of Primary Function Inputs in a
Project . 16-7
Why You Must Specify Input Properties 16-7
How to Specify an Input Definition in a Project 16-7

Autodefine Input Types . 16-8
How MATLAB Coder Autodefines Input Types 16-8
Prerequisites for Autodefining Input Types 16-8
How to Autodefine Input Types . 16-8

Define Input Parameters by Example in a Project 16-12
How to Define an Input Parameter by Example 16-12
Specifying Input Parameters by Example 16-13
Specifying an Enumerated Type Input Parameter by
Example . 16-15

Specifying a Fixed-Point Input Parameter by Example . . . 16-17

Define or Edit Input Parameter Type in a Project 16-19
How to Define or Edit an Input Parameter Type 16-19
Specifying an Enumerated Type Input Parameter by
Type . 16-21

Specifying a Fixed-Point Input Parameter by Type 16-22
Specifying Structures . 16-23

xvii

Define Constant Input Parameters in a Project 16-30

Define Inputs Programmatically in the MATLAB
File . 16-31

Adding Global Variables in a Project 16-32

Specifying Global Variable Type and Initial Value in a
Project . 16-33
Why Specify a Type Definition for Global Variables? 16-33
How to Specify a Global Variable Type 16-33
Defining a Global Variable by Example 16-34
Defining or Editing Global Variable Type 16-35
Defining Global Variable Initial Value 16-37
Removing Global Variables . 16-39

Specify Output File Name . 16-40
Command Line Alternative . 16-40

Specify Output File Locations . 16-41
Command Line Alternative . 16-41

Selecting Output Type . 16-42
Command Line Alternative . 16-42
Changing Output Type . 16-42

Preparing MATLAB Code for C/C++ Code
Generation

17
Workflow for Preparing MATLAB Code for Code
Generation . 17-2
See Also . 17-3

Fixing Errors Detected at Design Time 17-4
See Also . 17-4

xviii Contents

Using the Code Analyzer . 17-5

Check Code With the Code Analyzer 17-6

Check Code Using the Code Generation Readiness
Tool . 17-8
Run Code Generation Readiness Tool at the Command
Line . 17-8

Run Code Generation Readiness Tool from the Current
Folder Browser . 17-8

Run the Code Generation Readiness Tool in a Project 17-9
See Also . 17-9

Code Generation Readiness Tool . 17-10
What Information Does the Code Generation Readiness
Tool Provide? . 17-10

Summary Tab . 17-11
Code Structure Tab . 17-13
See Also . 17-16

Unable to Determine Code Generation Readiness 17-17

Generate MEX Functions Using the MATLAB Coder
Project Interface . 17-18
Project Workflow for Generating MEX Functions 17-18
Generate MEX Functions Using the Project Interface 17-18
Configure Project Settings . 17-24
Build a MATLAB Coder Project . 17-25
See Also . 17-26

Generate MEX Functions at the Command Line 17-27
Command-line Workflow for Generating MEX
Functions . 17-27

Generate MEX Functions at the Command Line 17-27
Generating MEX Functions at the Command Line Using
codegen . 17-28

See Also . 17-28

Fix Errors Detected at Code Generation Time 17-29
See Also . 17-29

xix

Design Considerations When Writing MATLAB Code
for Code Generation . 17-30
See Also . 17-31

Running MEX Functions . 17-32
Debugging MEX Functions . 17-32

Debugging Strategies . 17-33

Testing MEX Functions in MATLAB

18
Workflow for Testing MEX Functions in MATLAB 18-2
See Also . 18-2

Why Test MEX Functions in MATLAB? 18-4

Running MEX Functions . 18-5
Debugging MEX Functions . 18-5

Verify MEX Functions in a Project 18-6
Using Test Files That Call Only MATLAB Functions 18-6
Using Test Files That Call MEX Functions 18-7

Verify MEX Functions at the Command Line 18-8

Debug Run-Time Errors . 18-9
Viewing Errors in the Run-Time Stack 18-9
Handling Run-Time Errors . 18-11

xx Contents

Generating C/C++ Code from MATLAB Code

19
Code Generation Workflow . 19-3
See Also . 19-4

C/C++ Code Generation . 19-5
Specify Custom Files to Build . 19-5

Generating C/C++ Static Libraries from MATLAB
Code . 19-7
Generate a C Static Library Using the Project Interface . . 19-7
Generate a C Static Library at the Command Line 19-10

Generating C/C++ Dynamically Linked Libraries from
MATLAB Code . 19-11
Dynamic Libraries Generated by MATLAB Coder 19-11
Generate a C Dynamically Linked Library (DLL) Using the
Project Interface . 19-11

Generate a C Dynamic Library at the Command Line 19-13

Generating Standalone C/C++ Executables from
MATLAB Code . 19-15
Generate a C Executable Using the Project Interface 19-15
Generate a C Executable at the Command Line 19-17
Specifying main Functions for C/C++ Executables 19-19
Specify main Functions . 19-19

Build Setting Configuration . 19-21
Specify Output Type . 19-21
Specify a Language for Code Generation 19-24
Specify Data Type Used in Generated Code 19-25
Specify Output File Name . 19-26
Specify Output File Locations . 19-27
Parameter Specification Methods . 19-29
Specify Build Configuration Parameters 19-29

Share Build Configuration Settings 19-37
Export Settings . 19-37
Import Settings . 19-38

xxi

See Also . 19-39

Primary Function Input Specification 19-40
Why You Must Specify Input Properties 19-40
Properties to Specify . 19-40
Rules for Specifying Properties of Primary Inputs 19-44
Methods for Defining Properties of Primary Inputs 19-45
Define Input Properties by Example at the Command
Line . 19-46

Specify Constant Inputs at the Command Line 19-48
Specify Variable-Size Inputs at the Command Line 19-50

Define Input Properties Programmatically in the
MATLAB File . 19-52
How to Use assert with MATLAB Coder 19-52
Rules for Using assert Function . 19-59
Specifying General Properties of Primary Inputs 19-60
Specifying Properties of Primary Fixed-Point Inputs 19-61
Specifying Class and Size of Scalar Structure 19-61
Specifying Class and Size of Structure Array 19-62

Speed Up Compilation . 19-63
Generate Code Only . 19-63
Disable Compiler Optimization . 19-63

Paths and File Infrastructure Setup 19-65
Compile Path Search Order . 19-65
Specifying Folders to Search for Custom Code 19-65
Naming Conventions . 19-66

Generate Code for Multiple Entry-Point Functions . . . 19-71
Advantages of Generating Code for More Than One
Entry-Point Function . 19-71

Generating Code for More Than One Entry-Point Function
Using the Project Interface . 19-71

Generating Code for More Than One Entry-Point Function
at the Command Line . 19-74

How to Call an Entry-Point Function in a MEX Function . . 19-75
How to Call an Entry-Point Function in a C/C++ Library
Function from C/C++ Code . 19-76

xxii Contents

Generate Code for Global Data . 19-77
Workflow . 19-77
Declare Global Variables . 19-77
Define Global Data . 19-78
Synchronizing Global Data with MATLAB 19-79
Limitations of Using Global Data . 19-83

Generation of Traceable Code . 19-84
About Code Traceability . 19-84
Generate Traceable Code . 19-85
Format of Traceability Tags . 19-87
Location of Comments in Generated Code 19-87
Traceability Limitations . 19-92

Generate Code for Enumerated Types 19-94

Generate Code for Variable-Size Data 19-95
Disable Support for Variable-Size Data 19-95
Control Dynamic Memory Allocation 19-96
Generating Code for MATLAB Functions with Variable-Size
Data . 19-98

Generate Code for a MATLAB Function That Expands a
Vector in a Loop . 19-100

Using Dynamic Memory Allocation for an "Atoms"
Simulation . 19-107

Code Generation for MATLAB Classes 19-115

How MATLAB Coder Partitions Generated Code 19-116
Partitioning Generated Files . 19-116
How to Select the File Partitioning Method 19-116
Partitioning Generated Files with One C/C++ File Per
MATLAB File . 19-117

Generated Files and Locations . 19-122
File Partitioning and Inlining . 19-125

Customize the Post-Code-Generation Build Process . . 19-130
Customize Build Using coder.updateBuildInfo 19-130
Customize Build Using Post-Code-Generation
Command . 19-131

Build Information Object . 19-131

xxiii

Build Information Methods . 19-131
Write Post-Code-Generation Command 19-168
Use Post-Code-Generation Command to Customize
Build . 19-169

Write and Use Post-Code-Generation Command at the
Command Line . 19-170

Code Generation Reports . 19-172
About Code Generation Reports . 19-172
Enable Code Generation Reports . 19-175
View Your MATLAB Code in a Report 19-176
Viewing Call Stack Information . 19-177
View Generated C/C++ Code in a Report 19-180
Viewing the Build Summary Information 19-180
View Error and Warning Messages in a Report 19-181
Viewing Variables in Your MATLAB Code 19-182
Viewing Target Build Information . 19-188
Keyboard Shortcuts for the Code Generation Report 19-189
Report Limitations . 19-190

Troubleshooting . 19-192
Run-time Stack Overflow . 19-192

Package Code For Use in Other Development
Environments . 19-193
When to Package Code . 19-193
Package Generated Code in a Project 19-193
Package Generated Code at the Command Line 19-195
Specify packNGo options . 19-196

Custom Toolchain Registration

20
Custom Toolchain Registration . 20-2
What Is a Custom Toolchain? . 20-2
What Is a Factory Toolchain? . 20-2
What is a Toolchain Definition? . 20-3
Key Terms . 20-4
Typical Workflow . 20-5

xxiv Contents

About coder.make.ToolchainInfo . 20-6

Create and Edit Toolchain Definition File 20-8

Toolchain Definition File with Commentary 20-10
Steps Involved in Writing a Toolchain Definition File 20-10
Write a Function That Creates a ToolchainInfo Object . . . 20-10
Setup . 20-11
Macros . 20-12
C Compiler . 20-12
C++ Compiler . 20-13
Linker . 20-14
Archiver . 20-15
Builder . 20-15
Build Configurations . 20-16

Create and Validate ToolchainInfo Object 20-18

Register the Custom Toolchain . 20-19

Use the Custom Toolchain . 20-22

Troubleshooting Custom Toolchain Validation 20-23
Build Tool Command Path Incorrect 20-23
Build Tool Not in System Path . 20-23
Tool Path Does Not Exist . 20-24
Unsupported Platform . 20-24
Toolchain is Not installed . 20-25
Project or Configuration is Using the Template Makefile . . 20-25
Skipped Validation of Build Tool “Download” or
“Execute” . 20-26

Deploying Generated Code

21
Call a C Static Library Function from C Code 21-2

xxv

Call a C/C++ Static Library Function from MATLAB
Code . 21-4

Call Generated C/C++ Functions . 21-6
Conventions for Calling Functions in Generated Code 21-6
How to Call C/C++ Functions from MATLAB Code 21-6
Calling Initialize and Terminate Functions 21-7
Calling C/C++ Functions with Multiple Outputs 21-8
Calling C/C++ Functions that Return Arrays 21-8

Use a MATLAB Coder Dynamic Library in a Simple
Microsoft Visual Studio Project 21-9

Specify External File Locations . 21-12
External File Locations for External Code Integration . . . 21-12
Specify External Files in a Class Derived from
coder.ExternalDependency . 21-13

Specify External Files in MATLAB Code Using
coder.updateBuildInfo . 21-13

Specify External Files in the Project Settings Dialog
Box . 21-13

Specify External Files at the Command Line 21-14
Specify External Files with Configuration Objects 21-14

Accelerating MATLAB Algorithms

22
Workflow for Accelerating MATLAB Algorithms 22-2
See Also . 22-3

Best Practices for Using MEX Functions to Accelerate
MATLAB Algorithms . 22-4
Accelerate Code That Dominates Execution Time 22-4
Include Loops Inside MEX Function 22-5
Avoid Generating MEX Functions from Unsupported
Functions . 22-5

Avoid Generating MEX Functions if Built-In MATLAB
Functions Dominate Run Time . 22-6

Minimize MEX Function Calls . 22-6

xxvi Contents

Edge Detection on Images . 22-8

Accelerate MATLAB Algorithms . 22-15

Modifying MATLAB Code for Acceleration 22-16
How to Modify Your MATLAB Code for Acceleration 22-16

Control Run-Time Checks . 22-17
Types of Run-Time Checks . 22-17
When to Disable Run-Time Checks 22-18
How to Disable Run-Time Checks . 22-18

Algorithm Acceleration Using Parallel for-loops
(parfor) . 22-20
Parallel for-loops (parfor) in Generated Code 22-20
How parfor-loops Improve Execution Speed 22-21
When to Use parfor-loops . 22-21
When Not to Use parfor-loops . 22-22
parfor-loop Syntax . 22-22
parfor Restrictions . 22-23

Control Compilation of parfor-loops 22-27
When to Disable parfor . 22-27

Reduction Assignments in parfor-loops 22-28
What are Reduction Assignments? 22-28
Multiple Reductions in a parfor-loop 22-28

Classification of Variables in parfor-loops 22-29
Overview . 22-29
Sliced Variables . 22-30
Broadcast Variables . 22-32
Reduction Variables . 22-32
Temporary Variables . 22-38

Accelerate MATLAB Algorithms That Use Parallel
for-loops (parfor) . 22-40

Specify Maximum Number of Threads in
parfor-loops . 22-41

xxvii

Troubleshooting parfor-loops . 22-42
What Causes Errors About the Use of Global Structures in
Parallel Regions? . 22-42

Compiler Does Not Support OpenMP 22-42

Accelerating Simulation of Bouncing Balls 22-43

Calling C/C++ Functions from Generated Code

23
External Function Calls from Generated Code 23-2
Calling External Functions from Generated Code 23-2
Why Call External Functions from Generated Code? 23-2
How To Call External Functions . 23-2
Pass Arguments by Reference to External Functions 23-3
Manipulate C Data . 23-5

Call External Functions Using coder.ceval 23-7
Workflow for Calling External Functions 23-7
Best Practices for Calling External Code from Generated
Code . 23-8

Return Multiple Values from C Functions 23-9

How MATLAB Coder Infers C/C++ Data Types 23-10
Mapping MATLAB Types to C/C++ Types 23-10
Mapping 64-Bit Integer Types to C/C++ 23-12
Mapping Fixed-Point Types to C/C++ 23-12
Mapping Arrays to C/C++ . 23-13
Mapping Complex Values to C/C++ 23-13
Mapping Structures to C/C++ Structures 23-15
Mapping Strings to C/C++ . 23-15
Mapping Multiword Types to C/C++ 23-15

xxviii Contents

External Code Integration

24
External Code Integration for Code Generation 24-2

Encapsulating the Interface to External Code 24-3

Best Practices for Using coder.ExternalDependency . . 24-4
Terminate Code Generation for Unsupported External
Dependency . 24-4

Parameterize Methods for MATLAB and Generated
Code . 24-4

Parameterize updateBuildInfo for Multiple Platforms 24-5

Encapsulate Interface to an External C Library 24-6

Update Build Information from MATLAB code 24-10

Call External Functions Encapsulated by
coder.ExternalDependency . 24-11

Generate Efficient and Reusable Code

25
Optimization Strategies . 25-3

Modularize MATLAB Code . 25-6

Eliminate Redundant Copies of Function Inputs 25-7

Inline Code . 25-9
Prevent Function Inlining . 25-9
Use Inlining in Control Flow Statements 25-9

Control Inlining Using Configuration Object 25-11

xxix

Control Size of Functions Inlined . 25-11
Control Size of Functions After Inlining 25-12
Control Stack Size Limit on Inlined Functions 25-12

Fold Function Calls into Constants 25-14

Control Stack Space Usage . 25-16

Stack Allocation and Performance 25-17

Rewrite Logical Array Indexing as a Loop 25-18

Dynamic Memory Allocation and Performance 25-19
When Dynamic Memory Allocation Occurs 25-19

Minimize Dynamic Memory Allocation 25-21

Provide Maximum Size for Variable-size Arrays 25-22

Disable Dynamic Memory Allocation During Code
Generation . 25-29

Set Dynamic Memory Allocation Threshold 25-30
Set Dynamic Memory Allocation Threshold Using Project
Interface . 25-30

Set Dynamic Memory Allocation Threshold from Command
Line . 25-32

Excluding Unused Paths from Generated Code 25-33

Prevent Code Generation for Unused Execution
Paths . 25-34
Prevent Code Generation When Local Variable Controls
Flow . 25-34

Prevent Code Generation When Input Variable Controls
Flow . 25-35

Generate Code with Parallel for-loops (parfor) 25-37

xxx Contents

Minimize Redundant Operations in Loops 25-39

Unroll for-Loops . 25-41
Limit Copying the for-loop Body in Generated Code 25-41

Support for Integer Overflow and Non-Finites 25-44
Disable Support for Integer Overflow 25-44
Disable Support for Non-Finites . 25-45

Integrate Custom Code . 25-46

MATLAB Coder Optimizations in Generated Code 25-52
Constant Folding . 25-52
Loop Fusion . 25-53
Successive Matrix Operations Combined 25-54
Unreachable Code Elimination . 25-54

Generate Reusable Code . 25-56

Index

xxxi

xxxii Contents

1

About MATLAB Coder

• “MATLAB® Coder™ Product Description” on page 1-2

• “Product Overview” on page 1-3

• “Code Generation Workflow” on page 1-5

1 About MATLAB® Coder™

MATLAB Coder Product Description
Generate C and C++ code from MATLAB® code

MATLAB Coder™ generates standalone C and C++ code from MATLAB code.
The generated source code is portable and readable. MATLAB Coder supports
a subset of core MATLAB language features, including program control
constructs, functions, and matrix operations. It can generate MEX functions
that let you accelerate computationally intensive portions of MATLAB code
and verify the behavior of the generated code.

Key Features

• ANSI®/ISO® compliant C and C++ code generation

• MEX function generation for fixed-point and floating-point math

• Project management tool for specifying entry points, input data properties,
and other code-generation configuration options

• Static or dynamic memory allocation for variable-size data

• Code generation support for many functions and System objects in
Communications System Toolbox™, DSP System Toolbox™, Computer
Vision System Toolbox™, and Phased Array System Toolbox™

• Support for common MATLAB language features, including matrix
operations, subscripting, program controls statements (if, switch, for,
while), and structures

1-2

Product Overview

Product Overview

In this section...

“When to Use MATLAB® Coder™” on page 1-3

“Code Generation for Embedded Software Applications” on page 1-3

“Code Generation for Fixed-Point Algorithms” on page 1-4

When to Use MATLAB Coder
Use MATLAB Coder to:

• Generate readable, efficient, standalone C/C++ code from MATLAB code.

• Generate MEX functions from MATLAB code to:

- Accelerate your MATLAB algorithms.

- Verify generated C code within MATLAB.

• Integrate custom C/C++ code into MATLAB.

Code Generation for Embedded Software
Applications
The Embedded Coder® product extends the MATLAB Coder product with
features that are important for embedded software development. Using the
Embedded Coder add-on product, you can generate code that has the clarity
and efficiency of professional handwritten code. For example, you can:

• Generate code that is compact and fast, which is essential for real-time
simulators, on-target rapid prototyping boards, microprocessors used in
mass production, and embedded systems.

• Customize the appearance of the generated code.

• Optimize the generated code for a specific target environment.

• Enable tracing options that help you to verify the generated code.

• Generate reusable, reentrant code.

1-3

1 About MATLAB® Coder™

Code Generation for Fixed-Point Algorithms
Using the Fixed-Point Designer™ product, you can generate:

• MEX functions to accelerate fixed-point algorithms.

• Fixed-point code that provides a bit-wise match to MEX function results.

1-4

Code Generation Workflow

Code Generation Workflow

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Code Generation Workflow” on page 19-3

• “Workflow for Accelerating MATLAB Algorithms” on page 22-2

1-5

1 About MATLAB® Coder™

1-6

2

Design Considerations for
C/C++ Code Generation

• “When to Generate Code from MATLAB Algorithms” on page 2-2

• “Which Code Generation Feature to Use” on page 2-4

• “Prerequisites for C/C++ Code Generation from MATLAB” on page 2-5

• “MATLAB Code Design Considerations for Code Generation” on page 2-6

• “Expected Differences in Behavior After Compiling MATLAB Code” on
page 2-8

• “MATLAB Language Features Supported for C/C++ Code Generation” on
page 2-12

2 Design Considerations for C/C++ Code Generation

When to Generate Code from MATLAB Algorithms
Generating code from MATLAB algorithms for desktop and embedded
systems allows you to perform your software design, implementation, and
testing completely within the MATLAB workspace. You can:

• Verify that your algorithms are suitable for code generation

• Generate efficient, readable, and compact C/C++ code automatically, which
eliminates the need to manually translate your MATLAB algorithms and
minimizes the risk of introducing errors in the code.

• Modify your design in MATLAB code to take into account the specific
requirements of desktop and embedded applications, such as data type
management, memory use, and speed.

• Test the generated code and easily verify that your modified algorithms are
functionally equivalent to your original MATLAB algorithms.

• Generate MEX functions to:

- Accelerate MATLAB algorithms in certain applications.

- Speed up fixed-point MATLAB code.

• Generate hardware description language (HDL) from MATLAB code.

When Not to Generate Code from MATLAB Algorithms
Do not generate code from MATLAB algorithms for the following applications.
Use the recommended MathWorks® product instead.

To: Use:

Deploy an application that uses
handle graphics

MATLAB Compiler™

Use Java® MATLAB Builder™ JA

Use toolbox functions that do not
support code generation

Toolbox functions that you rewrite for
desktop and embedded applications

Deploy MATLAB based GUI
applications on a supported
MATLAB host

MATLAB Compiler

2-2

When to Generate Code from MATLAB® Algorithms

To: Use:

Deploy web-based or Windows®

applications
• MATLAB Builder NE

• MATLAB Builder JA

Interface C code with MATLAB MATLAB mex function

2-3

2 Design Considerations for C/C++ Code Generation

Which Code Generation Feature to Use

To... Use... Required Product To Explore Further...

Generate MEX
functions for verifying
generated code

codegen function MATLAB Coder Try this in “MEX
Function Generation
at the Command
Line”.

MATLAB Coder user
interface

MATLAB Coder Try this in “C Code
Generation Using the
Project Interface”.

Produce readable,
efficient, and compact
code from MATLAB
algorithms for
deployment to desktop
and embedded
systems.

codegen function MATLAB Coder Try this in “C Code
Generation at the
Command Line”.

MATLAB Coder user
interface

MATLAB CoderGenerate MEX
functions to accelerate
MATLAB algorithms codegen function MATLAB Coder

See “Accelerate
MATLAB Algorithms”
on page 22-15.

Integrate MATLAB
code into Simulink®

MATLAB Function
block

Simulink Try this in “Track
Object Using
MATLAB Code”.

Speed up fixed-point
MATLAB code

fiaccel function Fixed-Point Designer Learn more in “Code
Acceleration and
Code Generation from
MATLAB”.

Integrate custom C
code into MATLAB
and generate efficient,
readable code

codegen function MATLAB Coder Learn more in
“Specify External
File Locations” on
page 21-12.

Integrate custom
C code into code
generated from
MATLAB

coder.ceval function MATLAB Coder Learn more in
coder.ceval.

Generate HDL from
MATLAB code

MATLAB Function
block

Simulink and
HDL Coder™

Learn more at
www.mathworks.com/
products/slhdlcoder.

2-4

http://www.mathworks.com/products/slhdlcoder/
http://www.mathworks.com/products/slhdlcoder/

Prerequisites for C/C++ Code Generation from MATLAB®

Prerequisites for C/C++ Code Generation from MATLAB
To generate C/C++ or MEX code from MATLAB algorithms, you must install
the following software:

• MATLAB Coder product

• C/C++ compiler

2-5

2 Design Considerations for C/C++ Code Generation

MATLAB Code Design Considerations for Code Generation
When writing MATLAB code that you want to convert into efficient,
standalone C/C++ code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You
can define inputs, outputs, and local variables in MATLAB functions to
represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory
allocation.

With dynamic memory allocation, you potentially use less memory at the
expense of time to manage the memory. With static memory, you get
better speed, but with higher memory usage. Most MATLAB code takes
advantage of the dynamic sizing features in MATLAB, therefore dynamic
memory allocation typically enables you to generate code from existing
MATLAB code without modifying it much. Dynamic memory allocation also
allows some programs to compile even when upper bounds cannot be found.

Static allocation reduces the memory footprint of the generated code, and
therefore is suitable for applications where there is a limited amount of
available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be
fast enough to meet the required clock rate.

To improve the speed of the generated code:

- Choose a suitable C/C++ compiler. Do not use the default compiler that
MathWorks supplies with MATLAB for Windows 32-bit platforms.

- Consider disabling run-time checks.

2-6

MATLAB® Code Design Considerations for Code Generation

By default, for safety, the code generated for your MATLAB code
contains memory integrity checks and responsiveness checks. Generally,
these checks result in more generated code and slower simulation.
Disabling run-time checks usually results in streamlined generated code
and faster simulation. Disable these checks only if you have verified that
array bounds and dimension checking is unnecessary.

See Also

• “Data Definition Basics”

• “Variable-Size Data”

• “Bounded Versus Unbounded Variable-Size Data” on page 7-4

• “Control Dynamic Memory Allocation” on page 19-96

• “Control Run-Time Checks” on page 22-17

2-7

2 Design Considerations for C/C++ Code Generation

Expected Differences in Behavior After Compiling MATLAB
Code

In this section...

“Why Are There Differences?” on page 2-8

“Character Size” on page 2-8

“Order of Evaluation in Expressions” on page 2-8

“Termination Behavior” on page 2-9

“Size of Variable-Size N-D Arrays” on page 2-9

“Size of Empty Arrays” on page 2-10

“Floating-Point Numerical Results” on page 2-10

“NaN and Infinity Patterns” on page 2-11

“Code Generation Target” on page 2-11

“MATLAB Class Initial Values” on page 2-11

“Variable-Size Support for Code Generation” on page 2-11

Why Are There Differences?
To convert MATLAB code to C/C++ code that works efficiently, the code
generation process introduces optimizations that intentionally cause the
generated code to behave differently — and sometimes produce different
results — from the original source code. This section describes these
differences.

Character Size
MATLAB supports 16-bit characters, but the generated code represents
characters in 8 bits, the standard size for most embedded languages like C.
See “Code Generation for Characters” on page 6-7.

Order of Evaluation in Expressions
Generated code does not enforce order of evaluation in expressions. For most
expressions, order of evaluation is not significant. However, for expressions

2-8

Expected Differences in Behavior After Compiling MATLAB® Code

with side effects, the generated code may produce the side effects in different
order from the original MATLAB code. Expressions that produce side effects
include those that:

• Modify persistent or global variables

• Display data to the screen

• Write data to files

• Modify the properties of handle class objects

In addition, the generated code does not enforce order of evaluation of logical
operators that do not short circuit.

For more predictable results, it is good coding practice to split expressions
that depend on the order of evaluation into multiple statements. For example,
rewrite:

A = f1() + f2();

as

A = f1();
A = A + f2();

so that the generated code calls f1 before f2.

Termination Behavior
Generated code does not match the termination behavior of MATLAB source
code. For example, optimizations remove infinite loops from generated code if
they do not have side effects. As a result, the generated code may terminate
even though the corresponding MATLAB code does not.

Size of Variable-Size N-D Arrays
For variable-size N-D arrays, the size function might return a different
result in generated code than in MATLAB source code. The size function
sometimes returns trailing ones (singleton dimensions) in generated code, but
always drops trailing ones in MATLAB. For example, for an N-D array X with
dimensions [4 2 1 1], size(X) might return [4 2 1 1] in generated code,

2-9

2 Design Considerations for C/C++ Code Generation

but always returns [4 2] in MATLAB. See “Incompatibility with MATLAB in
Determining Size of Variable-Size N-D Arrays” on page 7-29.

Size of Empty Arrays
The size of an empty array in generated code might be different from its size
in MATLAB source code. See “Incompatibility with MATLAB in Determining
Size of Empty Arrays” on page 7-30.

Floating-Point Numerical Results
The generated code might not produce the same floating-point numerical
results as MATLAB in the following situations:

When computer hardware uses extended precision registers

Results vary depending on how the C/C++ compiler allocates extended
precision floating-point registers. Computation results might not match
MATLAB calculations because of different compiler optimization settings or
different code surrounding the floating-point calculations.

For certain advanced library functions

The generated code might use different algorithms to implement certain
advanced library functions, such as fft, svd, eig, mldivide, and mrdivide.

For example, the generated code uses a simpler algorithm to implement
svd to accommodate a smaller footprint. Results might also vary according
to matrix properties. For example, MATLAB might detect symmetric or
Hermitian matrices at run time and switch to specialized algorithms that
perform computations faster than implementations in the generated code.

For implementation of BLAS library functions

For implementations of BLAS library functions. Generated C/C++ code uses
reference implementations of BLAS functions, which may produce different
results from platform-specific BLAS implementations in MATLAB.

2-10

Expected Differences in Behavior After Compiling MATLAB® Code

NaN and Infinity Patterns
The generated code might not produce exactly the same pattern of NaN and inf
values as MATLAB code when these values are mathematically meaningless.
For example, if MATLAB output contains a NaN, output from the generated
code should also contain a NaN, but not necessarily in the same place.

Code Generation Target
The coder.target function returns different values in MATLAB than in the
generated code. The intent is to help you determine whether your function
is executing in MATLAB or has been compiled for a simulation or code
generation target. See coder.target.

MATLAB Class Initial Values
MATLAB computes class initial values at class loading time before code
generation. The code generation software uses the value that MATLAB
computed, it does not recompute the initial value. If the initialization uses
a function call to compute the initial value, the code generation software
does not execute this function. If the function modifies a global state, for
example, a persistent variable, code generation software might provide a
different initial value than MATLAB. For more information, see “Defining
Class Properties for Code Generation” on page 10-4.

Variable-Size Support for Code Generation
For incompatibilities with MATLAB in variable-size support for code
generation, see:

• “Incompatibility with MATLAB for Scalar Expansion” on page 7-27

• “Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays” on page 7-29

• “Incompatibility with MATLAB in Determining Size of Empty Arrays”
on page 7-30

• “Incompatibility with MATLAB in Vector-Vector Indexing” on page 7-32

• “Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation” on page 7-33

2-11

2 Design Considerations for C/C++ Code Generation

MATLAB Language Features Supported for C/C++ Code
Generation

MATLAB supports the following language features in generated code:

• N-dimensional arrays

• Matrix operations, including deletion of rows and columns

• Variable-sized data (see “Variable-Size Data Definition for Code
Generation” on page 7-3)

• Subscripting (see “Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation” on page 7-33)

• Complex numbers (see “Code Generation for Complex Data” on page 6-4)

• Numeric classes (see “Supported Variable Types” on page 5-18)

• Double-precision, single-precision, and integer math

• Fixed-point arithmetic (see “Code Acceleration and Code Generation from
MATLAB”)

• Program control statements if, switch, for, while, and break

• Arithmetic, relational, and logical operators

• Local functions

• Persistent variables (see “Define and Initialize Persistent Variables” on
page 5-10)

• Global variables (see “Specifying Global Variable Type and Initial Value in
a Project” on page 16-33).

• Structures

• Characters (see “Code Generation for Characters” on page 6-7)

• Function handles

• Frames

• Variable length input and output argument lists

• Subset of MATLAB toolbox functions

• MATLAB classes

2-12

MATLAB® Language Features Supported for C/C++ Code Generation

• Ability to call functions (see “Resolution of Function Calls in MATLAB
Generated Code” on page 13-2)

MATLAB Language Features Not Supported for C/C++
Code Generation
MATLAB does not support the following features in generated code:

• Anonymous functions

• Cell arrays

• Java

• Nested functions

• Recursion

• Sparse matrices

• try/catch statements

2-13

2 Design Considerations for C/C++ Code Generation

2-14

3

System Objects Supported
for Code Generation

3 System Objects Supported for Code Generation

System Objects Supported for C/C++ Code Generation

In this section...

“Code Generation for System Objects” on page 3-2

“Computer Vision System Toolbox System Objects” on page 3-2

“Communications System Toolbox System Objects” on page 3-7

“DSP System Toolbox System Objects” on page 3-13

“Phased Array System Toolbox System Objects” on page 3-19

“Image Acquisition Toolbox System Objects” on page 3-23

Code Generation for System Objects
You can generate C/C++ code for a subset of System objects provided by
Communications System Toolbox, DSP System Toolbox, Computer Vision
System Toolbox, and Phased Array System Toolbox. To use these System
objects, you need to install the requisite toolbox.

System objects are MATLAB object-oriented implementations of algorithms.
They extend MATLAB by enabling you to model dynamic systems represented
by time-varying algorithms. System objects are well integrated into the
MATLAB language, regardless of whether you are writing simple functions,
working interactively in the command window, or creating large applications.

In contrast to MATLAB functions, System objects automatically manage
state information, data indexing, and buffering, which is particularly useful
for iterative computations or stream data processing. This enables efficient
processing of long data sets. For general information on MATLAB objects,
see “Begin Using Object-Oriented Programming”.

Computer Vision System Toolbox System Objects
If you install Computer Vision System Toolbox software, you can generate
C/C++ code for the following Computer Vision System Toolbox System objects.
For more information on how to use these System objects, see “System Objects
in MATLAB Code Generation”.

3-2

System Objects Supported for C/C++ Code Generation

Supported Computer Vision System Toolbox System Objects

Object Description

Analysis & Enhancement

vision.BoundaryTracer Trace object boundaries in binary images.

vision.ContrastAdjuster Adjust image contrast by linear scaling.

vision.Deinterlacer Remove motion artifacts by deinterlacing input
video signal.

vision.EdgeDetector Find edges of objects in images.

vision.ForegroundDetector Detect foreground using Gaussian Mixture
Models. This object supports tunable properties
in code generation.

vision.HistogramBasedTracker Track object in video based on histogram. This
object supports tunable properties in code
generation.

vision.HistogramEqualizer Enhance contrast of images using histogram
equalization.

vision.TemplateMatcher Perform template matching by shifting
template over image.

Conversions

vision.Autothresholder Convert intensity image to binary image.

vision.ChromaResampler Downsample or upsample chrominance
components of images.

vision.ColorSpaceConverter Convert color information between color spaces.

vision.DemosaicInterpolator Demosaic Bayer’s format images.

vision.GammaCorrector Apply or remove gamma correction from
images or video streams.

vision.ImageComplementer Compute complement of pixel values in binary,
intensity, or RGB images.

vision.ImageDataTypeConverter Convert and scale input image to specified
output data type.

3-3

3 System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

Feature Detection, Extraction, and Matching

vision.CornerDetector Corner metric matrix and corner detector.
This object supports tunable properties in code
generation.

Filtering

vision.Convolver Compute 2-D discrete convolution of two input
matrices.

vision.ImageFilter Perform 2-D FIR filtering of input matrix.

vision.MedianFilter 2D median filtering.

Geometric Transformations

vision.GeometricRotator Rotate image by specified angle.

vision.GeometricScaler Enlarge or shrink image size.

vision.GeometricShearer Shift rows or columns of image by linearly
varying offset.

vision.GeometricTransformer Apply projective or affine transformation to
an image.

vision.GeometricTransformEstimator Estimate geometric transformation from
matching point pairs.

vision.GeometricTranslator Translate image in two-dimensional plane
using displacement vector.

Morphological Operations

vision.ConnectedComponentLabeler Label and count the connected regions in a
binary image.

vision.MorphologicalClose Perform morphological closing on image.

vision.MorphologicalDilate Perform morphological dilation on an image.

3-4

System Objects Supported for C/C++ Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.MorphologicalErode Perform morphological erosion on an image.

vision.MorphologicalOpen Perform morphological opening on an image.

Object Detection

vision.CascadeObjectDetector Detect objects using the Viola-Jones algorithm.

vision.HistogramBasedTracker Track object in video based on histogram. This
object supports tunable properties in code
generation.

vision.PointTracker Track points in video using
Kanade-Lucas-Tomasi (KLT) algorithm.

vision.PeopleDetector Detect upright people using HOG features.

Sinks

vision.VideoPlayer Send video data to computer screen. This
System object does not generate code. It is
automatically declared as an extrinsic variable
using the coder.extrinsic function.

vision.DeployableVideoPlayer Send video data to computer screen.

vision.VideoFileWriter Write video frames and audio samples to
multimedia file.

Sources

vision.VideoFileReader Read video frames and audio samples from
compressed multimedia file.

Statistics

vision.Autocorrelator Compute 2-D autocorrelation of input matrix.

vision.BlobAnalysis Compute statistics for connected regions in a
binary image.

3-5

3 System Objects Supported for Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.Crosscorrelator Compute 2-D cross-correlation of two input
matrices.

vision.Histogram Generate histogram of each input matrix. This
object has no tunable properties.

vision.LocalMaximaFinder Find local maxima in matrices.

vision.Maximum Find maximum values in input or sequence of
inputs.

vision.Mean Find mean value of input or sequence of inputs.

vision.Median Find median values in an input.

vision.Minimum Find minimum values in input or sequence of
inputs.

vision.PSNR Compute peak signal-to-noise ratio (PSNR)
between images.

vision.StandardDeviation Find standard deviation of input or sequence
of inputs.

vision.Variance Find variance values in an input or sequence
of inputs.

Text & Graphics

vision.AlphaBlender Combine images, overlay images, or highlight
selected pixels.

vision.MarkerInserter Draw markers on output image.

vision.ShapeInserter Draw rectangles, lines, polygons, or circles on
images.

vision.TextInserter Draw text on image or video stream.

Transforms

vision.DCT Compute 2-D discrete cosine transform.

vision.FFT Two-dimensional discrete Fourier transform.

3-6

System Objects Supported for C/C++ Code Generation

Supported Computer Vision System Toolbox System Objects (Continued)

Object Description

vision.HoughLines Find Cartesian coordinates of lines that are
described by rho and theta pairs.

vision.HoughTransform Find lines in images via Hough transform.

vision.IDCT Compute 2-D inverse discrete cosine transform.

vision.IFFT Two–dimensional inverse discrete Fourier
transform.

vision.Pyramid Perform Gaussian pyramid decomposition.

Utilities

vision.ImagePadder Pad or crop input image along its rows,
columns, or both.

Communications System Toolbox System Objects
If you install Communications System Toolbox software, you can generate
C/C++ code for the following Communications System Toolbox System objects.
For information on how to use these System objects, see “Code Generation
with System Objects”.

Supported Communications System Toolbox System Objects

Object Description

Source Coding

comm.DifferentialDecoder Decode binary signal using differential decoding

comm.DifferentialEncoder Encode binary signal using differential coding

Channels

comm.AWGNChannel Add white Gaussian noise to input signal

comm.LTEMIMOChannel Filter input signal through LTE MIMO multipath
fading channel

3-7

3 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.MIMOChannel Filter input signal through MIMO multipath fading
channel

comm.BinarySymmetricChannel Introduce binary errors

Equalizers

comm.MLSEEqualizer Equalize using maximum likelihood sequence
estimation

Filters

comm.IntegrateAndDumpFilter Integrate discrete-time signal with periodic resets

Measurements

comm.ACPR Measure adjacent channel power ratio

comm.CCDF Measure complementary cumulative distribution
function

comm.EVM Measure error vector magnitude

comm.MER Measure modulation error ratio

Sources

comm.BarkerCode Generate Barker code

comm.HadamardCode Generate Hadamard code

comm.KasamiSequence Generate a Kasami sequence

comm.OVSFCode Generate OVSF code

comm.PNSequence Generate a pseudo-noise (PN) sequence

comm.WalshCode Generate Walsh code from orthogonal set of codes

Error Detection and Correction – Block Coding

comm.BCHDecoder Decode data using BCH decoder

comm.BCHEncoder Encode data using BCH encoder

comm.LDPCDecoder Decode binary low-density parity-check code

comm.LDPCEncoder Encode binary low-density parity-check code

3-8

System Objects Supported for C/C++ Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.RSDecoder Decode data using Reed-Solomon decoder

comm.RSEncoder Encode data using Reed-Solomon encoder

Error Detection and Correction – Convolutional Coding

comm.ConvolutionalEncoder Convolutionally encode binary data

comm.ViterbiDecoder Decode convolutionally encoded data using Viterbi
algorithm

Error Detection and Correction – Cyclic Redundancy Check Coding

comm.CRCDetector Detect errors in input data using cyclic redundancy
code

comm.CRCGenerator Generate cyclic redundancy code bits and append to
input data

comm.HDLCRCGenerator Generate CRC code bits and append to input data,
optimized for HDL code generation

comm.TurboDecoder Decode input signal using parallel concatenated
decoding scheme

comm.TurboEncoder Encode input signal using parallel concatenated
encoding scheme

Interleavers – Block

comm.AlgebraicDeinterleaver Deinterleave input symbols using algebraically
derived permutation vector

comm.AlgebraicInterleaver Permute input symbols using an algebraically
derived permutation vector

comm.BlockDeinterleaver Deinterleave input symbols using permutation
vector

comm.BlockInterleaver Permute input symbols using a permutation vector

comm.MatrixDeinterleaver Deinterleave input symbols using permutation
matrix

comm.MatrixInterleaver Permute input symbols using permutation matrix

3-9

3 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.MatrixHelicalScanDeinterleaver Deinterleave input symbols by filling a matrix along
diagonals

comm.MatrixHelicalScanInterleaver Permute input symbols by selecting matrix elements
along diagonals

Interleavers – Convolutional

comm.ConvolutionalDeinterleaver Restore ordering of symbols using shift registers

comm.ConvolutionalInterleaver Permute input symbols using shift registers

comm.HelicalDeinterleaver Restore ordering of symbols using a helical array

comm.HelicalInterleaver Permute input symbols using a helical array

comm.MultiplexedDeinterleaver Restore ordering of symbols using a set of shift
registers with specified delays

comm.MultiplexedInterleaver Permute input symbols using a set of shift registers
with specified delays

MIMO

comm.OSTBCCombiner Combine inputs using orthogonal space-time block
code

comm.OSTBCEncoder Encode input message using orthogonal space-time
block code

Digital Baseband Modulation – Phase

comm.BPSKDemodulator Demodulate using binary PSK method

comm.BPSKModulator Modulate using binary PSK method

comm.DBPSKModulator Modulate using differential binary PSK method

comm.DPSKDemodulator Demodulate using M-ary DPSK method

comm.DPSKModulator Modulate using M-ary DPSK method

comm.DQPSKDemodulator Demodulate using differential quadrature PSK
method

comm.DQPSKModulator Modulate using differential quadrature PSK method

3-10

System Objects Supported for C/C++ Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.DBPSKDemodulator Demodulate using M-ary DPSK method

comm.QPSKDemodulator Demodulate using quadrature PSK method

comm.QPSKModulator Modulate using quadrature PSK method

comm.PSKDemodulator Demodulate using M-ary PSK method

comm.PSKModulator Modulate using M-ary PSK method

comm.OQPSKDemodulator Demodulate offset quadrature PSK modulated data

comm.OQPSKModulator Modulate using offset quadrature PSK method

Digital Baseband Modulation – Amplitude

comm.GeneralQAMDemodulator Demodulate using arbitrary QAM constellation.
This object has no tunable properties in code
generation.

comm.GeneralQAMModulator Modulate using arbitrary QAM constellation

comm.PAMDemodulator Demodulate using M-ary PAM method

comm.PAMModulator Modulate using M-ary PAM method

comm.RectangularQAMDemodulator Demodulate using rectangular QAM method

comm.RectangularQAMModulator Modulate using rectangular QAM method

Digital Baseband Modulation – Frequency

comm.FSKDemodulator Demodulate using M-ary FSK method

comm.FSKModulator Modulate using M-ary FSK method

Digital Baseband Modulation – Trelllis Coded

comm.GeneralQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to arbitrary QAM constellation

comm.GeneralQAMTCMModulator Convolutionally encode binary data and map using
arbitrary QAM constellation

comm.PSKTCMDemodulator Demodulate convolutionally encoded data mapped
to M-ary PSK constellation

3-11

3 System Objects Supported for Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.PSKTCMModulator Convolutionally encode binary data and map using
M-ary PSK constellation

comm.RectangularQAMTCMDemodulator Demodulate convolutionally encoded data mapped
to rectangular QAM constellation

comm.RectangularQAMTCMModulator Convolutionally encode binary data and map using
rectangular QAM constellation

Digital Baseband Modulation – Continuous Phase

comm.CPFSKDemodulator Demodulate using CPFSK method and Viterbi
algorithm

comm.CPFSKModulator Modulate using CPFSK method

comm.CPMDemodulator Demodulate using CPM method and Viterbi
algorithm

comm.CPMModulator Modulate using CPM method

comm.GMSKDemodulator Demodulate using GMSK method and the Viterbi
algorithm

comm.GMSKModulator Modulate using GMSK method

comm.MSKDemodulator Demodulate using MSK method and the Viterbi
algorithm

comm.MSKModulator Modulate using MSK method

RF Impairments

comm.MemorylessNonlinearity Apply memoryless nonlinearity to input signal

comm.PhaseFrequencyOffset Apply phase and frequency offsets to input signal.
The PhaseOffset property of this object is not
tunable in code generation.

comm.PhaseNoise Apply phase noise to complex baseband signal

comm.ThermalNoise Add receiver thermal noise

Synchronization – Timing Phase

3-12

System Objects Supported for C/C++ Code Generation

Supported Communications System Toolbox System Objects (Continued)

Object Description

comm.EarlyLateGateTimingSynchronizer Recover symbol timing phase using early-late gate
method

comm.GardnerTimingSynchronizer Recover symbol timing phase using Gardner’s
method

comm.GMSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

comm.MSKTimingSynchronizer Recover symbol timing phase using fourth-order
nonlinearity method

comm.MuellerMullerTimingSynchronizer Recover symbol timing phase using Mueller-Muller
method

Synchronization Utilities

comm.CPMCarrierPhaseSynchronizer Recover carrier phase of baseband CPM signal

comm.DiscreteTimeVCO Generate variable frequency sinusoid

Converters

comm.BitToInteger Convert vector of bits to vector of integers

comm.IntegerToBit Convert vector of integers to vector of bits

Sequence Operators

comm.Descrambler Descramble input signal

comm.GoldSequence Generate Gold sequence

comm.Scrambler Scramble input signal

DSP System Toolbox System Objects
If you install DSP System Toolbox software, you can generate C/C++ code for
the following DSP System Toolbox System objects. For information on how to
use these System objects, see “Code Generation with System Objects”.

3-13

3 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects

Object Description

Estimation

dsp.BurgAREstimator Compute estimate of autoregressive model parameters
using Burg method

dsp.BurgSpectrumEstimator Compute parametric spectral estimate using Burg
method

dsp.CepstralToLPC Convert cepstral coefficients to linear prediction
coefficients

dsp.LevinsonSolver Solve linear system of equations using
Levinson-Durbin recursion

dsp.LPCToAutocorrelation Convert linear prediction coefficients to autocorrelation
coefficients

dsp.LPCToCepstral Convert linear prediction coefficients to cepstral
coefficients

dsp.LPCToLSF Convert linear prediction coefficients to line spectral
frequencies

dsp.LPCToLSP Convert linear prediction coefficients to line spectral
pairs

dsp.LPCToRC Convert linear prediction coefficients to reflection
coefficients

dsp.LSFToLPC Convert line spectral frequencies to linear prediction
coefficients

dsp.LSPToLPC Convert line spectral pairs to linear prediction
coefficients

dsp.RCToAutocorrelation Convert reflection coefficients to autocorrelation
coefficients

dsp.RCToLPC Convert reflection coefficients to linear prediction
coefficients

Filters

dsp.AffineProjectionFilter Adaptive filter using the Affine Projection algorithm

3-14

System Objects Supported for C/C++ Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.AllpoleFilter IIR Filter with no zeros. Only the Denominator
property is tunable for code generation.

dsp.BiquadFilter Model biquadratic IIR (SOS) filters

dsp.CICDecimator Decimate input using Cascaded Integrator-Comb filter

dsp.CICInterpolator Interpolate signal using Cascaded Integrator-Comb
filter

dsp.DigitalFilter Filter each channel of input over time using
discrete-time filter implementations. The SOSMatrix
and ScaleValues properties at not supported for code
generation.

dsp.FIRDecimator Filter and downsample input signals

dsp.FIRFilter Static or time-varying FIR filter. Only the Numerator
property is tunable for code generation.

dsp.FIRInterpolator Upsample and filter input signals

dsp.FIRRateConverter Upsample, filter and downsample input signals

dsp.IIRFilter Infinite Impulse Response (IIR) filter. Only the
Numerator and Denominator properties are tunable
for code generation.

dsp.LMSFilter Compute output, error, and weights using LMS
adaptive algorithm

dsp.RLSFilter Adaptive filter using the Recursive Least Squares
(RLS) algorithm

Math Operations

dsp.ArrayVectorAdder Add vector to array along specified dimension

dsp.ArrayVectorDivider Divide array by vector along specified dimension

dsp.ArrayVectorMultiplier Multiply array by vector along specified dimension

3-15

3 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.ArrayVectorSubtractor Subtract vector from array along specified dimension

dsp.CumulativeProduct Compute cumulative product of channel, column, or
row elements

dsp.CumulativeSum Compute cumulative sum of channel, column, or row
elements

dsp.LDLFactor Factor square Hermitian positive definite matrices
into lower, upper, and diagonal components

dsp.LevinsonSolver Solve linear system of equations using
Levinson-Durbin recursion

dsp.LowerTriangularSolver Solve LX = B for X when L is lower triangular matrix

dsp.LUFactor Factor square matrix into lower and upper triangular
matrices

dsp.Normalizer Normalize input

dsp.UpperTriangularSolver Solve UX = B for X when U is upper triangular matrix

Quantizers

dsp.ScalarQuantizerDecoder Convert each index value into quantized output value

dsp.ScalarQuantizerEncoder Perform scalar quantization encoding

dsp.VectorQuantizerDecoder Find vector quantizer codeword for given index value

dsp.VectorQuantizerEncoder Perform vector quantization encoding

Scopes

dsp.SpectrumAnalyzer Display frequency spectrum of time-domain signals.
This System object does not generate code. It is
automatically declared as an extrinsic variable using
the coder.extrinsic function.

dsp.TimeScope Display time-domain signals. This System object does
not generate code. It is automatically declared as an
extrinsic variable using the coder.extrinsic function.

Signal Management

3-16

System Objects Supported for C/C++ Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.Counter Count up or down through specified range of numbers

dsp.DelayLine Rebuffer sequence of inputs with one-sample shift

Signal Operations

dsp.Convolver Compute convolution of two inputs

dsp.Delay Delay input by specified number of samples or frames

dsp.Interpolator Interpolate values of real input samples

dsp.NCO Generate real or complex sinusoidal signals

dsp.PeakFinder Determine extrema (maxima or minima) in input
signal

dsp.PhaseUnwrapper Unwrap signal phase

dsp.VariableFractionalDelay Delay input by time-varying fractional number of
sample periods

dsp.VariableIntegerDelay Delay input by time-varying integer number of sample
periods

dsp.Window Generate or apply window function. This object has no
tunable properties for code generation.

dsp.ZeroCrossingDetector Calculate number of zero crossings of a signal

Sinks

dsp.AudioPlayer Write audio data to computer’s audio device

dsp.AudioFileWriter Write audio file

dsp.UDPSender Send UDP packets to the network

Sources

dsp.AudioFileReader Read audio samples from an audio file

dsp.AudioRecorder Read audio data from computer’s audio device

dsp.SignalSource Import variable from workspace

3-17

3 System Objects Supported for Code Generation

Supported DSP System Toolbox System Objects (Continued)

Object Description

dsp.SineWave Generate discrete sine wave. This object has no
tunable properties for code generation.

dsp.UDPReceiver Receive UDP packets from the network

Statistics

dsp.Autocorrelator Compute autocorrelation of vector inputs

dsp.Crosscorrelator Compute cross-correlation of two inputs

dsp.Histogram Output histogram of an input or sequence of inputs.
This object has no tunable properties for code
generation.

dsp.Maximum Compute maximum value in input

dsp.Mean Compute average or mean value in input

dsp.Median Compute median value in input

dsp.Minimum Compute minimum value in input

dsp.RMS Compute root-mean-square of vector elements

dsp.StandardDeviation Compute standard deviation of vector elements

dsp.Variance Compute variance of input or sequence of inputs

Transforms

dsp.AnalyticSignal Compute analytic signals of discrete-time inputs

dsp.DCT Compute discrete cosine transform (DCT) of input

dsp.FFT Compute fast Fourier transform (FFT) of input

dsp.IDCT Compute inverse discrete cosine transform (IDCT) of
input

dsp.IFFT Compute inverse fast Fourier transform (IFFT) of
input

3-18

System Objects Supported for C/C++ Code Generation

Phased Array System Toolbox System Objects
If you install Phased Array System Toolbox software, you can generate C/C++
code for the following Phased Array System Toolbox System objects. For more
information on how to use these System objects, see “About Code Generation”.

Supported Phased Array System Toolbox System Objects

Object Description

Antenna and Microphone Elements

phased.CosineAntennaElement Cosine antenna element

phased.CrossedDipoleAntennaElement Crossed-dipole antenna element

phased.CustomAntennaElement Custom antenna element

phased.CustomMicrophoneElement Custom microphone

phased.IsotropicAntennaElement Isotropic antenna element

phased.OmnidirectionalMicrophoneElement Omnidirectional microphone

phased.ShortDipoleAntennaElement Short-dipole antenna element

Array Geometries and Analysis

phased.ULA Uniform linear array

phased.URA Uniform rectangular array

phased.ConformalArray Conformal array

phased.PartitionedArray Phased array partitioned into subarrays

phased.ReplicatedSubarray Phased array formed by replicated subarrays

phased.SteeringVector Sensor array steering vector

phased.ArrayGain Sensor array gain

phased.ArrayResponse Sensor array response

phased.ElementDelay Sensor array element delay estimator

Signal Radiation and Collection

phased.Collector Narrowband signal collector

phased.Radiator Narrowband signal radiator

3-19

3 System Objects Supported for Code Generation

Supported Phased Array System Toolbox System Objects (Continued)

Object Description

phased.WidebandCollector Wideband signal collector

Note Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

Waveforms, Transmitter, and Receiver

phased.LinearFMWaveform Linear FM pulse waveform

phased.PhaseCodedWaveform Phase-coded pulse waveform

phased.RectangularWaveform Rectangular pulse waveform

phased.SteppedFMWaveform Stepped FM pulse waveform

phased.FMCWWaveform FMCW Waveform

phased.MatchedFilter Matched filter

phased.Transmitter Transmitter

phased.ReceiverPreamp Receiver preamp

Beamforming

phased.PhaseShiftBeamformer Narrowband phase shift beamformer

phased.LCMVBeamformer Narrowband LCMV beamformer

phased.MVDRBeamformer Narrowband MVDR (Capon) beamformer

phased.SubbandPhaseShiftBeamformer Subband phase shift beamformer

phased.FrostBeamformer Frost beamformer

Note Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

3-20

System Objects Supported for C/C++ Code Generation

Supported Phased Array System Toolbox System Objects (Continued)

Object Description

phased.TimeDelayBeamformer Time delay beamformer

Note Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

phased.TimeDelayLCMVBeamformer Time delay LCMV beamformer

Note Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

phased.SteeringVector Sensor array steering vector

Direction of Arrival (DOA) Estimation

phased.SumDifferenceMonopulseTracker Sum and difference monopulse for ULA

phased.SumDifferenceMonopulseTracker2D Sum and difference monopulse for URA

phased.BeamscanEstimator Beamscan spatial spectrum estimator for ULA

phased.BeamscanEstimator2D 2-D beamscan spatial spectrum estimator

phased.MVDREstimator MVDR (Capon) spatial spectrum estimator for
ULA

phased.MVDREstimator2D 2-D MVDR (Capon) spatial spectrum estimator

phased.RootMUSICEstimator Root MUSIC direction of arrival (DOA)
estimator

phased.RootWSFEstimator Root WSF direction of arrival (DOA) estimator

phased.ESPRITEstimator ESPRIT direction of arrival (DOA) estimator

phased.BeamspaceESPRITEstimator Beamspace ESPRIT direction of arrival (DOA)
estimator

3-21

3 System Objects Supported for Code Generation

Supported Phased Array System Toolbox System Objects (Continued)

Object Description

Space-Time Adaptive Processing (STAP)

phased.STAPSMIBeamformer Sample matrix inversion (SMI) beamformer

phased.DPCACanceller Displaced phase center array (DPCA) pulse
canceller

phased.ADPCACanceller Adaptive DPCA (ADPCA) pulse canceller

phased.AngleDopplerResponse Angle-Doppler response

Detection

phased.CFARDetector Constant false alarm rate (CFAR) detector

phased.MatchedFilter Matched filter

phased.RangeDopplerResponse Range-Doppler response

phased.StretchProcessor Stretch processor for linear FM waveform

phased.TimeVaryingGain Time varying gain control

Environment and Target Models

phased.FreeSpace Free space environment

Note Requires dynamic memory allocation.
See “Limitations for System Objects that
Require Dynamic Memory Allocation”.

phased.RadarTarget Radar target

phased.ConstantGammaClutter Constant gamma clutter simulation

phased.BarrageJammer Barrage jammer

Coordinate Systems and Motion Modeling

phased.Platform Motion platform

3-22

System Objects Supported for C/C++ Code Generation

Image Acquisition Toolbox System Objects
If you install Image Acquisition Toolbox™ software, you can generate C/C++
code for the VideoDevice System object. See imaq.VideoDevice and “Code
Generation with VideoDevice System Object”.

3-23

3 System Objects Supported for Code Generation

3-24

4

Functions Supported for
Code Generation

• “Functions Supported for C/C++ Code Generation — Alphabetical List”
on page 4-2

• “Functions Supported for C/C++ Code Generation — Categorical List” on
page 4-88

4 Functions Supported for Code Generation

Functions Supported for C/C++ Code Generation —
Alphabetical List

You can generate efficient C/C++ code for a subset of MATLAB and toolbox
functions that you call from MATLAB code. In generated code, each supported
function has the same name, arguments, and functionality as its MATLAB or
toolbox counterparts. However, to generate code for these functions, you must
adhere to certain limitations when calling them from your MATLAB source
code. These limitations appear in the list below.

To find supported functions by MATLAB category or toolbox, see “Functions
Supported for C/C++ Code Generation — Categorical List” on page 4-88.

Note For more information on code generation for fixed-point algorithms,
refer to “Code Acceleration and Code Generation from MATLAB”.

Function Product Remarks and Limitations

abs MATLAB —

abs Fixed-Point
Designer

—

accumneg Fixed-Point
Designer

—

accumpos Fixed-Point
Designer

—

acos MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

acosd MATLAB —

4-2

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

acosh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

acot MATLAB —

acotd MATLAB —

acoth MATLAB —

acsc MATLAB —

acscd MATLAB —

acsch MATLAB —

add Fixed-Point
Designer

—

aictest Phased Array
System Toolbox

Does not support variable-size inputs.

albersheim Phased Array
System Toolbox

Does not support variable-size inputs.

all MATLAB —

all Fixed-Point
Designer

—

ambgfun Phased Array
System Toolbox

Does not support variable-size inputs.

and MATLAB —

any MATLAB —

any Fixed-Point
Designer

—

aperture2gain Phased Array
System Toolbox

Does not support variable-size inputs.

asec MATLAB —

4-3

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

asecd MATLAB —

asech MATLAB —

asin MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

asind MATLAB —

asinh MATLAB —

assert MATLAB • Generates specified error messages at
compile time only if all input arguments
are constants or depend on constants.
Otherwise, generates specified error
messages at run time.

• For standalone code generation, excluded
from the generated code.

• See “Rules for Using assert Function” on
page 19-59.

atan MATLAB —

atan2 MATLAB —

atan2 Fixed-Point
Designer

—

atan2d MATLAB —

atand MATLAB —

atanh MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

4-4

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

az2broadside Phased Array
System Toolbox

Does not support variable-size inputs.

azel2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

azel2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

azel2uv Phased Array
System Toolbox

Does not support variable-size inputs.

azel2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

azelaxes Phased Array
System Toolbox

Does not support variable-size inputs.

barthannwin Signal
Processing
Toolbox™

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

bartlett Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-5

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

beat2range Phased Array
System Toolbox

Does not support variable-size inputs.

besselap Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Filter order must be a constant. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

beta MATLAB —

betacdf Statistics
Toolbox™

—

betainc MATLAB —

betaincinv MATLAB —

betainv Statistics
Toolbox

—

betaln MATLAB —

betapdf Statistics
Toolbox

—

betarnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

betastat Statistics
Toolbox

—

4-6

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

bi2de Communications
System Toolbox

—

billingsleyicm Phased Array
System Toolbox

Does not support variable-size inputs.

bin2dec MATLAB • Does not match MATLAB when the input
is empty.

binaryFeatures Computer Vision
System Toolbox

—

binocdf Statistics
Toolbox

—

binoinv Statistics
Toolbox

—

binopdf Statistics
Toolbox

—

binornd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

binostat Statistics
Toolbox

—

bitand MATLAB • Does not support floating-point inputs. The
arguments must belong to an integer class.

bitand Fixed-Point
Designer

• Not supported for slope-bias scaled fi
objects.

bitandreduce Fixed-Point
Designer

—

bitcmp MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

4-7

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

bitcmp Fixed-Point
Designer

—

bitconcat Fixed-Point
Designer

—

bitget MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

bitget Fixed-Point
Designer

—

bitmax MATLAB —

bitor MATLAB • Does not support floating-point inputs. The
arguments must belong to an unsigned
integer class.

bitor Fixed-Point
Designer

• Not supported for slope-bias scaled fi
objects.

bitorreduce Fixed-Point
Designer

—

bitreplicate Fixed-Point
Designer

—

bitrevorder Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Computation performed at run time.

bitrol Fixed-Point
Designer

—

bitror Fixed-Point
Designer

—

bitset MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

4-8

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

bitset Fixed-Point
Designer

—

bitshift MATLAB • Does not support floating-point input for the
first argument. The first argument must
belong to an unsigned integer class.

bitshift Fixed-Point
Designer

—

bitsliceget Fixed-Point
Designer

—

bitsll Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsra Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitsrl Fixed-Point
Designer

• Generated code may not handle out of range
shifting.

bitxor MATLAB • Does not support floating-point inputs. The
arguments must belong to an unsigned
integer class.

bitxor Fixed-Point
Designer

• Not supported for slope-bias scaled fi
objects.

bitxorreduce Fixed-Point
Designer

—

blackman Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-9

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

blackmanharris Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

blanks MATLAB —

blkdiag MATLAB —

bohmanwin Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Window length must be a constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

broadside2az Phased Array
System Toolbox

Does not support variable-size inputs.

bsxfun MATLAB —

4-10

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

buttap Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Filter order must be a constant. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

butter Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

buttord Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-11

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

bwlookup Image
Processing
Toolbox™

• For best results, specify an input image of
class logical.

bwmorph Image
Processing
Toolbox

• The text string specifying the operation
must be a constant and, for best results,
specify an input image of class logical.

cart2pol MATLAB —

cart2sph MATLAB —

cart2sphvec Phased Array
System Toolbox

Does not support variable-size inputs.

cast MATLAB —

cat MATLAB —

cbfweights Phased Array
System Toolbox

Does not support variable-size inputs.

cdf Statistics
Toolbox

—

ceil MATLAB —

ceil Fixed-Point
Designer

—

cfirpm Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

char MATLAB —

4-12

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

cheb1ap Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

cheb1ord Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

cheb2ap Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-13

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

cheb2ord Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

chebwin Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

cheby1 Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-14

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

cheby2 Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

chi2cdf Statistics
Toolbox

—

chi2inv Statistics
Toolbox

—

chi2pdf Statistics
Toolbox

—

chi2rnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

chi2stat Statistics
Toolbox

—

chol MATLAB • When there are two output arguments,
either make the input matrix variable-size
in both dimensions, or, if the input matrix
must be fixed size, copy the input matrix to
a variable-size matrix before calling chol.

coder.varsize('B');
B = A;
[B,p] = chol(B);

4-15

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

circpol2pol Phased Array
System Toolbox

Does not support variable-size inputs.

circshift MATLAB —

class MATLAB —

compan MATLAB —

complex MATLAB —

complex Fixed-Point
Designer

—

computer MATLAB • Information about the computer on which
the code generation software is running.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

cond MATLAB —

conj MATLAB —

conj Fixed-Point
Designer

—

conndef Image
Processing
Toolbox

All input arguments must be compile-time
constants.

conv MATLAB —

conv Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is computed using
the SumMode property of the governing
fimath.

4-16

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath
when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

conv2 MATLAB —

convergent Fixed-Point
Designer

—

convn MATLAB —

cordicabs Fixed-Point
Designer

• Variable-size signals are not supported.

cordicangle Fixed-Point
Designer

• Variable-size signals are not supported.

cordicatan2 Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccart2pol Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccexp Fixed-Point
Designer

• Variable-size signals are not supported.

cordiccos Fixed-Point
Designer

• Variable-size signals are not supported.

cordicpol2cart Fixed-Point
Designer

• Variable-size signals are not supported.

cordicrotate Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsin Fixed-Point
Designer

• Variable-size signals are not supported.

cordicsincos Fixed-Point
Designer

• Variable-size signals are not supported.

4-17

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

cornerPoints Computer Vision
System Toolbox

—

corrcoef MATLAB • Row-vector input is only supported when the
first two inputs are vectors and nonscalar.

cos MATLAB —

cos Fixed-Point
Designer

—

cosd MATLAB —

cosh MATLAB —

cot MATLAB —

cotd MATLAB —

coth MATLAB —

cov MATLAB —

cross MATLAB • If supplied, dim must be a constant.

csc MATLAB —

cscd MATLAB —

csch MATLAB —

ctranspose MATLAB —

ctranspose Fixed-Point
Designer

—

cumprod MATLAB • Logical inputs are not supported. Cast input
to double first.

cumsum MATLAB • Logical inputs are not supported. Cast input
to double first.

cumtrapz MATLAB —

4-18

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

dct Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

de2bi Communications
System Toolbox

—

deal MATLAB —

deblank MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.

dec2bin MATLAB • If input d is double, d must be less than
2^52.

• If input d is single, d must be less than
2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support,
n must be at least 52 for double, 23 for
single, 16 for char, 32 for int32, 16 for
int16, and so on.

4-19

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

dec2hex MATLAB • If input d is double, d must be less than
2^52.

• If input d is single, d must be less than
2^23.

• Unless you specify input n to be constant and
n is large enough that the output has a fixed
number of columns regardless of the input
values, this function requires variable-sizing
support. Without variable-sizing support, n
must be at least 13 for double, 6 for single,
4 for char, 8 for int32, 4 for int16, and so
on.

dechirp Phased Array
System Toolbox

Does not support variable-size inputs.

deconv MATLAB —

del2 MATLAB —

delayseq Phased Array
System Toolbox

Does not support variable-size inputs.

depressionang Phased Array
System Toolbox

Does not support variable-size inputs.

det MATLAB —

detectFASTFeatures Computer Vision
System Toolbox

—

detectMSERFeatures Computer Vision
System Toolbox

—

detectSURFFeatures Computer Vision
System Toolbox

—

4-20

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

detrend MATLAB • If supplied and not empty, the input
argument bp must satisfy the following
requirements:

- Be real.

- Be sorted in ascending order.

- Restrict elements to integers in the
interval [1, n-2]. n is the number of
elements in a column of input argument X
, or the number of elements in X when X
is a row vector.

- Contain all unique values.

diag MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

• For variable-size inputs that are
variable-length vectors (1-by-: or :-by-1),
diag:

- Treats the input as a vector input.

- Returns a matrix with the given vector
along the specified diagonal.

• For variable-size inputs that are not
variable-length vectors, diag:

- Treats the input as a matrix.

- Does not support inputs that are vectors
at run time.

- Returns a variable-length vector.

If the input is variable-size (:m-by-:n) and
has shape 0-by-0 at run time, the output is
0-by-1 not 0-by-0. However, if the input is a
constant size 0-by-0, the output is [].

4-21

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

• For variable-size inputs that are not
variable-length vectors (1-by-: or :-by-1),
diag treats the input as a matrix from which
to extract a diagonal vector. This behavior
occurs even if the input array is a vector at
run time. To force diag to build a matrix
from variable-size inputs that are not 1-by-:
or :-by-1, use:

- diag(x(:)) instead of diag(x)

- diag(x(:),k) instead of diag(x,k)

diag Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

diff MATLAB • If supplied, the arguments representing
the number of times to apply diff and the
dimension along which to calculate the
difference must be constants.

disparity Computer Vision
System Toolbox

—

divide Fixed-Point
Designer

• Any non-fi input must be constant. Its
value must be known at compile time so that
it can be cast to a fi object.

• Complex and imaginary divisors are not
supported.

• The syntax T.divide(a,b) is not supported.

dop2speed Phased Array
System Toolbox

Does not support variable-size inputs.

dopsteeringvec Phased Array
System Toolbox

Does not support variable-size inputs.

dot MATLAB —

double MATLAB —

4-22

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

double Fixed-Point
Designer

—

downsample Signal
Processing
Toolbox

• Does not support variable-size inputs.

dpss Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

effearthradius Phased Array
System Toolbox

Does not support variable-size inputs.

eig MATLAB • QZ algorithm used in all cases, whereas
MATLAB might use different algorithms
for different inputs. Consequently, V might
represent a different basis of eigenvectors,
and the eigenvalues in D might not be in the
same order as in MATLAB.

• With one input, [V,D] = eig(A), the results
will be similar to those obtained using [V,D]
= eig(A,eye(size(A)),'qz') in MATLAB,
except that for code generation, the columns
of V are normalized.

• Options 'balance', 'nobalance' are not
supported for the standard eigenvalue
problem, and 'chol' is not supported for the
symmetric generalized eigenvalue problem.

• Outputs are of complex type.

4-23

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

ellip Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

ellipap Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

ellipke MATLAB —

ellipord Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

end Fixed-Point
Designer

—

4-24

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

epipolarLine Computer Vision
System Toolbox

—

eps MATLAB —

eps Fixed-Point
Designer

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and fi double signals.

eq MATLAB —

eq Fixed-Point
Designer

Not supported for fixed-point signals with
different biases.

erf MATLAB —

erfc MATLAB —

erfcinv MATLAB —

erfcx MATLAB —

erfinv MATLAB —

error MATLAB For standalone code generation, excluded from
the generated code.

espritdoa Phased Array
System Toolbox

Does not support variable-size inputs.

estimate
Fundamental
Matrix

Computer Vision
System Toolbox

—

estimate
Uncalibrated
Rectification

Computer Vision
System Toolbox

—

extractFeatures Computer Vision
System Toolbox

—

evcdf Statistics
Toolbox

—

evinv Statistics
Toolbox

—

4-25

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

evpdf Statistics
Toolbox

—

evrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

evstat Statistics
Toolbox

—

exp MATLAB —

expcdf Statistics
Toolbox

—

expint MATLAB —

expinv Statistics
Toolbox

—

expm MATLAB —

expm1 MATLAB —

exppdf Statistics
Toolbox

—

exprnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

expstat Statistics
Toolbox

—

extractFeatures Computer Vision
System Toolbox

—

4-26

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

eye MATLAB • classname must be a built-in MATLAB
numeric type. Does not invoke the static
eye method for other classes. For example,
eye(m, n, 'myclass') does not invoke
myclass.eye(m,n).

factor MATLAB • The maximum double precision input is
2^33.

• The maximum single precision input is 2^25.

• The input n cannot have type int64 or
uint64.

factorial MATLAB —

false MATLAB • Dimensions must be real, nonnegative,
integers.

fcdf Statistics
Toolbox

—

fclose MATLAB —

fft MATLAB • Length of input vector must be a power of 2.

fft2 MATLAB • Length of input matrix dimensions must
each be a power of 2.

fftn MATLAB • Length of input matrix dimensions must
each be a power of 2.

fftshift MATLAB —

4-27

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

fi Fixed-Point
Designer

• Use to create a fixed-point constant or
variable.

• The default constructor syntax without
input arguments is not supported.

• The syntax
fi('PropertyName',PropertyValue...)
is not supported. To use property
name/property value pairs, you must first
specify the value v of the fi object as in
fi(v,'PropertyName',PropertyValue...).

• If the input value is not known at
compile time, you must provide complete
numerictype information.

• numerictype object information must be
available for non-fixed-point Simulink
inputs.

filter MATLAB —

filter Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

filter2 MATLAB —

filtfilt Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Filter coefficients must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-28

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

fimath Fixed-Point
Designer

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned
the fimath object defined in the MATLAB
Function dialog in the Model Explorer.

• Use to create fimath objects in generated
code.

find MATLAB • Issues an error if a variable-sized input
becomes a row vector at run time.

Note This limitation does not apply when
the input is scalar or a variable-length row
vector.

• For variable-sized inputs, the shape of empty
outputs, 0-by-0, 0-by-1, or 1-by-0, depends
on the upper bounds of the size of the input.
The output might not match MATLAB
when the input array is a scalar or [] at run
time. If the input is a variable-length row
vector, the size of an empty output is 1-by-0,
otherwise it is 0-by-1.

finv Statistics
Toolbox

—

fir1 Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-29

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

fir2 Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

fircls Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

fircls1 Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-30

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

firls Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

firpm Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

firpmord Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-31

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

firrcos Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

fix MATLAB —

fix Fixed-Point
Designer

—

fixed.Quantizer Fixed-Point
Designer

—

flattopwin Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

flintmax MATLAB —

flipdim MATLAB —

fliplr MATLAB —

flipud MATLAB —

floor MATLAB —

4-32

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

floor Fixed-Point
Designer

—

fopen MATLAB • Does not support:

- machineformat, encoding, or fileID
inputs

- message output

- fopen(`all')

• If you disable extrinsic calls, you cannot
return fileIDs created with fopen to
MATLAB or extrinsic functions. You can
only use such fileIDs internally.

• You can open up to 20 files when generating
C/C++ executables, static libraries, or
dynamic libraries.

fpdf Statistics
Toolbox

—

fprintf MATLAB • Does not support:

- b and t subtypes on %u, %o %x, and %X
formats

- $ flag for reusing input arguments

- printing arrays

• There is no automatic casting. Input
arguments must match their format types
for predictable results.

• Escaped characters are limited to the
decimal range of 0–127.

• A call to fprintf with fileID equal to 1 or
2 becomes printf in the generated C/C++
code in the following cases:

- The fprintf call is inside a parfor loop.

4-33

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

- Extrinsic calls are disabled.

• When the MATLAB behavior differs from
the C compiler behavior, fprintf matches
the C compiler behavior in the following
cases:

- The format specifier has a corresponding
C format specifier, for example, %e or %E.

- The fprintf call is inside a parfor loop.

- Extrinsic calls are disabled.

• When you call fprintf with the format
specifier %s, do not put a null character
in the middle of the input string. Use
fprintf(fid, '%c', char(0)) to write a
null character.

• When you call fprintf with an integer
format specifier, the type of the integer
argument must be a type that the target
hardware can represent as a native C type.
For example, if you call fprintf('%d',
int64(n)), the target hardware must have a
native C type that supports a 64-bit integer.

freqspace MATLAB —

freqz Signal
Processing
Toolbox

• Does not support variable-size inputs.

• freqz with no output arguments produces a
plot only when the function call terminates
in a semicolon. See “freqzWith No Output
Arguments”.

4-34

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

frnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

fspecial Image
Processing
Toolbox

All inputs must be constants at compilation
time. Expressions or variables are allowed if
their values do not change.

fspl Phased Array
System Toolbox

Does not support variable-size inputs.

fstat Statistics
Toolbox

—

full MATLAB —

fzero MATLAB • The first argument must be a function
handle. Does not support structure, inline
function, or string inputs for the first
argument.

• Supports up to three output arguments.
Does not support the fourth output argument
(the output structure).

• Only supports the TolX and FunValCheck
fields of an options input structure. Ignores
other options in an options input structure.
You cannot use the optimset function to
create the options structure. Create this
structure directly, for example,

opt.TolX = tol;
opt.FunValCheck = 'on';

The input structure field names must match
exactly.

4-35

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

gain2aperture Phased Array
System Toolbox

Does not support variable-size inputs.

gamcdf Statistics
Toolbox

—

gaminv Statistics
Toolbox

—

gamma MATLAB —

gammainc MATLAB —

gammaincinv MATLAB —

gammaln MATLAB —

gampdf Statistics
Toolbox

—

gamrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

gamstat Statistics
Toolbox

—

gaussfir Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

4-36

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

gausswin Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

gcd MATLAB —

ge MATLAB —

ge Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

geocdf Statistics
Toolbox

—

geoinv Statistics
Toolbox

—

geomean Statistics
Toolbox

—

geopdf Statistics
Toolbox

—

geornd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

geostat Statistics
Toolbox

—

get Fixed-Point
Designer

• The syntax structure = get(o) is not
supported.

4-37

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

getlsb Fixed-Point
Designer

—

getmsb Fixed-Point
Designer

—

gevcdf Statistics
Toolbox

—

gevinv Statistics
Toolbox

—

gevpdf Statistics
Toolbox

—

gevrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

gevstat Statistics
Toolbox

—

global2localcoord Phased Array
System Toolbox

Does not support variable-size inputs.

gpcdf Statistics
Toolbox

—

gpinv Statistics
Toolbox

—

gppdf Statistics
Toolbox

—

gprnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

4-38

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

gpstat Statistics
Toolbox

—

gradient MATLAB —

grazingang Phased Array
System Toolbox

Does not support variable-size inputs.

gt MATLAB —

gt Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

hadamard MATLAB —

hamming Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

hankel MATLAB —

hann Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

harmmean Statistics
Toolbox

—

4-39

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

hdlram Fixed-Point
Designer

—

hex2dec MATLAB —

hex2num MATLAB • For n = hex2num(S), size(S,2) <=
length(num2hex(0))

hilb MATLAB —

hist MATLAB • Histogram bar plotting not supported; call
with at least one output argument.

• If supplied, the second argument x must be
a scalar constant.

• Inputs must be real.

histc MATLAB • The output of a variable-size array that
becomes a column vector at run time is a
column-vector, not a row-vector.

horizonrange Phased Array
System Toolbox

Does not support variable-size inputs.

horzcat Fixed-Point
Designer

—

hygecdf Statistics
Toolbox

—

hygeinv Statistics
Toolbox

—

hygepdf Statistics
Toolbox

—

hygernd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

4-40

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

hygestat Statistics
Toolbox

—

hypot MATLAB —

icdf Statistics
Toolbox

—

idct Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Length of transform dimension must
be a power of two. If specified, the pad
or truncation value must be constant.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

idivide MATLAB • For efficient generated code, MATLAB rules
for divide by zero are supported only for the
'round' option.

ifft MATLAB • Length of input vector must be a power of 2.

• Output of ifft block is complex.

• Does not support the 'symmetric' option.

ifft2 MATLAB • Length of input matrix dimensions must
each be a power of 2.

• Does not support the 'symmetric' option.

ifftn MATLAB • Length of input matrix dimensions must
each be a power of 2.

• Does not support the 'symmetric' option.

ifftshift MATLAB —

imag MATLAB —

4-41

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

imag Fixed-Point
Designer

—

imcomplement Image
Processing
Toolbox

Does not support int64 and uint64 data types.

imfill Image
Processing
Toolbox

The optional input connectivity, conn, and
the string 'holes' must be compile-time
constants.

Supports only up to 3-D inputs. (No N-D
support.)

The interactive mode to select points,
imfill(BW,0,CONN), is not supported in code
generation.

locations can be a P-by-1 vector, in which
case it contains the linear indices of the
starting locations. locations can also be a
P-by-ndims(I) matrix, in which case each
row contains the array indices of one of the
starting locations. Once you select a format at
compile time, you cannot change it at run time.
However, the number of points in locations can
be varied at run time.

Generated code for this function uses a
precompiled platform-specific shared library.

imhmax Image
Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imhmin Image
Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

4-42

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

imreconstruct Image
Processing
Toolbox

The optional third input argument, conn, must
be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imregionalmax Image
Processing
Toolbox

The optional second input argument, conn,
must be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

imregionalmin Image
Processing
Toolbox

The optional second input argument, conn,
must be a compile-time constant.

Generated code for this function uses a
precompiled platform-specific shared library.

ind2sub MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more
than intmax elements are not supported.

inf MATLAB • Dimensions must be real, nonnegative,
integers.

insertMarker Computer Vision
System Toolbox

• 'Color' input cannot be a cell array.

• position input cannot be a cornerPoints
object.

• marker input must be constant.

• marker input cannot be 's'.

insertShape Computer Vision
System Toolbox

• position input cannot be a cell array.

• 'Color' input cannot be a cell array.

• shape input must be constant.

int8, int16, int32, int64 MATLAB You cannot use int64 in a :

• MATLAB Function block in a Simulink
model

• MATLAB function in a Stateflow® chart

4-43

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

int8, int16, int32, int64 Fixed-Point
Designer

You cannot use int64 in a :

• MATLAB Function block in a Simulink
model

• MATLAB function in a Stateflow chart

integralImage Computer Vision
System Toolbox

—

interp1 MATLAB • Supports only linear and nearest
interpolation methods.

• Does not handle evenly spaced X indices
separately.

• X must be strictly monotonically increasing
or strictly monotonically decreasing; does
not reorder indices.

interp2 MATLAB • Supports only 5 <= nargin <= 7.

• XI and YI must be the same size.

• Supports only 'linear' and 'nearest'
methods.

• For best results, supply X and Y as vectors.

• When the X or Y inputs are not vectors,
interp2 references only the first row of X
and first column of Y. Supports "plaid" input
for X and Y but does not verify that the input
data is "plaid".

• X and Y must contain monotonically
increasing values. If your application
provides monotonically decreasing values,
first use fliplr and flipud to change X,
Y, and Z to monotonically increasing form
before calling interp2.

4-44

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

intersect MATLAB • When you do not specify the 'rows' option:

- Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- The input [] is not supported. Use
a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when you
specify the 'legacy' option, the inputs must
already be sorted in ascending order. The
first output, C, is sorted in ascending order.

• Complex inputs must be single or double.

• When one input is complex and the other
input is real, do one of the following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending
order (by absolute value). Suppose the
real input is x. Use sort(complex(x))or
sortrows(complex(x)).

4-45

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

intfilt Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

intmax MATLAB —

intmin MATLAB —

inv MATLAB Singular matrix inputs can produce nonfinite
values that differ from MATLAB results.

invhilb MATLAB —

ipermute MATLAB —

iptcheckconn Image
Processing
Toolbox

All input arguments must be compile-time
constants.

iqr Statistics
Toolbox

—

isa MATLAB —

iscell MATLAB —

ischar MATLAB —

iscolumn MATLAB —

iscolumn Fixed-Point
Designer

—

isdeployed MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets

• Returns false for other targets

4-46

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

isempty MATLAB —

isempty Fixed-Point
Designer

—

isEpipoleInImage Computer Vision
System Toolbox

—

isequal MATLAB —

isequal Fixed-Point
Designer

—

isequaln MATLAB —

isfi Fixed-Point
Designer

—

isfield MATLAB • Does not support cell input for second
argument

isfimath Fixed-Point
Designer

—

isfimathlocal Fixed-Point
Designer

—

isfinite MATLAB —

isfinite Fixed-Point
Designer

—

isfloat MATLAB —

isinf MATLAB —

isinf Fixed-Point
Designer

—

isinteger MATLAB —

isletter MATLAB • Input values from the char class must be in
the range 0-127

islogical MATLAB —

4-47

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

ismac MATLAB • Returns true or false based on the MATLAB
version used for code generation.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

ismatrix MATLAB —

ismcc MATLAB
Compiler

• Returns true and false as appropriate for
MEX and SIM targets.

• Returns false for other targets.

ismember MATLAB • The second input, B, must be sorted in
ascending order.

• Complex inputs must be single or double.

isnan MATLAB —

isnan Fixed-Point
Designer

—

isnumeric MATLAB —

isnumeric Fixed-Point
Designer

—

isnumerictype Fixed-Point
Designer

—

ispc MATLAB • Returns true or false based on the MATLAB
version you use for code generation.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

isprime MATLAB • The maximum double precision input is
2^33.

• The maximum single precision input is 2^25.

• The input X cannot have type int64 or
uint64.

isreal MATLAB —

4-48

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

isreal Fixed-Point
Designer

—

isrow MATLAB —

isrow Fixed-Point
Designer

—

isscalar MATLAB —

isscalar Fixed-Point
Designer

—

issigned Fixed-Point
Designer

—

issorted MATLAB —

isspace MATLAB • Input values from the char class must be in
the range 0–127.

issparse MATLAB —

isstrprop MATLAB
• Supports only inputs from char and integer
classes.

• Input values must be in the range 0-127.

isstruct MATLAB —

istrellis Communications
System Toolbox

—

isunix MATLAB • Returns true or false based on the MATLAB
version used for code generation.

• Use only when the code generation target is
S-function (Simulation) or MEX-function.

isvector MATLAB —

isvector Fixed-Point
Designer

—

4-49

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

kaiser Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

kaiserord Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Computation performed at run time.

kron MATLAB —

kurtosis Statistics
Toolbox

—

label2rgb Image
Processing
Toolbox

Referring to the standard syntax:

RGB = label2rgb(L,map,zerocolor,order)

• Submit at least two input arguments: the
label matrix, L, and the colormap matrix,
map.

• map must be an n-by-3, double, colormap
matrix. You cannot use a string containing
the name of a MATLAB colormap function
or a function handle of a colormap function.

• If you set the boundary color zerocolor
to the same color as one of the regions,
label2rgb will not issue a warning.

• If you supply a value for order, it must be
'noshuffle'.

lcm MATLAB —

4-50

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

lcmvweights Phased Array
System Toolbox

Does not support variable-size inputs.

ldivide MATLAB —

le MATLAB —

le Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

length MATLAB —

length Fixed-Point
Designer

—

levinson Signal
Processing
Toolbox

• Does not support variable-size inputs.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

lineToBorderPoints Computer Vision
System Toolbox

—

linsolve MATLAB • The option structure must be a constant.

• Supports only a scalar option structure
input. It does not support arrays of option
structures.

• Only optimizes these cases:

- UT

- LT

- UHESS = true (the TRANSA can be either
true or false)

- SYM = true and POSDEF = true

4-51

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

Other options are equivalent to using
mldivide.

linspace MATLAB —

load MATLAB • Use only when generating MEX or code for
Simulink simulation. To load compile-time
constants, use coder.load.

• Does not support use of the function without
assignment to a structure or array. For
example, use S = load(filename), not
load(filename).

• The output Smust be the name of a structure
or array without any subscripting. For
example, S[i] = load('myFile.mat') is
not allowed.

• Arguments to load must be compile-time
constant strings.

• Does not support loading objects.

• If the MAT-file contains unsupported
constructs, use load(filename,variables)
to load only the supported constructs.

• You cannot use save in a function intended
for code generation. The code generation
software does not support the save
function. Furthermore, you cannot use
coder.extrinsic with save. Prior to
generating code, you can use save to save
the workspace data to a MAT-file.

You must use coder.varsize to explicitly
declare variable-size data loaded using the
load function.

local2globalcoord Phased Array
System Toolbox

Does not support variable-size inputs.

4-52

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

log MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

log2 MATLAB —

log10 MATLAB —

log1p MATLAB —

logical MATLAB —

logical Fixed-Point
Designer

—

logncdf Statistics
Toolbox

—

logninv Statistics
Toolbox

—

lognpdf Statistics
Toolbox

—

lognrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

lognstat Statistics
Toolbox

—

logspace MATLAB —

lower MATLAB
• Supports only char inputs.

• Input values must be in the range 0-127.

4-53

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

lowerbound Fixed-Point
Designer

—

lsb Fixed-Point
Designer

• Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi
single and double signals.

lt MATLAB —

lt Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

lu MATLAB —

mad Statistics
Toolbox

Input dim cannot be empty.

magic MATLAB —

matchFeatures Computer Vision
System Toolbox

—

max MATLAB —

max Fixed-Point
Designer

—

maxflat Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

mdltest Phased Array
System Toolbox

Does not support variable-size inputs.

mean MATLAB —

4-54

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

mean Fixed-Point
Designer

—

median MATLAB —

median Fixed-Point
Designer

—

meshgrid MATLAB —

mfilename MATLAB —

min MATLAB —

min Fixed-Point
Designer

—

minus MATLAB —

minus Fixed-Point
Designer

• Any non-fi input must be constant. Its
value must be known at compile time so that
it can be cast to a fi object.

mldivide MATLAB —

mnpdf Statistics
Toolbox

—

mod MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB
due to differences in rounding errors.

If one of the inputs has type int64 or uint64,
then both inputs must have the same type.

mode MATLAB • Does not support third output argument C
(cell array).

moment Statistics
Toolbox

If order is nonintegral and X is real, use
moment(complex(X), order).

mpower MATLAB —

4-55

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

mpower Fixed-Point
Designer

• The exponent input, k, must be constant;
that is, its value must be known at compile
time.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is computed using
the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath
when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

mpy Fixed-Point
Designer

• When you provide complex inputs to the
mpy function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

mrdivide MATLAB —

mrdivide Fixed-Point
Designer

—

MSERRegions Computer Vision
System Toolbox

—

mtimes MATLAB —

4-56

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

mtimes Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

• For variable-sized signals, you may see
different results between MATLAB and the
generated code.

- In generated code, the output for
variable-sized signals is computed using
the SumMode property of the governing
fimath.

- In MATLAB, the output for variable-sized
signals is computed using the SumMode
property of the governing fimath
when both inputs are nonscalar.
However, if either input is a scalar,
MATLAB computes the output using the
ProductMode of the governing fimath.

mvdrweights Phased Array
System Toolbox

Does not support variable-size inputs.

NaN or nan MATLAB • Dimensions must be real, nonnegative,
integers.

nancov Statistics
Toolbox

If the input is variable-size and is [] at run
time, returns [] not NaN.

nanmax Statistics
Toolbox

—

nanmean Statistics
Toolbox

—

nanmedian Statistics
Toolbox

—

4-57

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

nanmin Statistics
Toolbox

—

nanstd Statistics
Toolbox

—

nansum Statistics
Toolbox

—

nanvar Statistics
Toolbox

—

nargchk MATLAB • Output structure does not include stack
information.

Note nargchk will be removed in a future
release.

nargin MATLAB —

narginchk MATLAB —

nargout MATLAB • For a function with no output arguments,
returns 1 if called without a terminating
semicolon.

Note This behavior also affects extrinsic calls
with no terminating semicolon. nargout is 1
for the called function in MATLAB.

nargoutchk MATLAB —

nbincdf Statistics
Toolbox

—

nbininv Statistics
Toolbox

—

nbinpdf Statistics
Toolbox

—

4-58

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

nbinrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

nbinstat Statistics
Toolbox

—

ncfcdf Statistics
Toolbox

—

ncfinv Statistics
Toolbox

—

ncfpdf Statistics
Toolbox

—

ncfrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

ncfstat Statistics
Toolbox

—

nchoosek MATLAB • When the first input, x, is a scalar, nchoosek
returns a binomial coefficient. In this case,
x must be a nonnegative integer. It cannot
have type int64 or uint64.

• When the first input, x, is a vector, nchoosek
treats it as a set. In this case, x can have
type int64 or uint64.

• The second input, k, cannot have type int64
or uint64.

4-59

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

nctcdf Statistics
Toolbox

—

nctinv Statistics
Toolbox

—

nctpdf Statistics
Toolbox

—

nctrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

nctstat Statistics
Toolbox

—

ncx2cdf Statistics
Toolbox

—

ncx2rnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

ncx2stat Statistics
Toolbox

—

ndgrid MATLAB —

ndims MATLAB —

ndims Fixed-Point
Designer

—

ne MATLAB —

ne Fixed-Point
Designer

• Not supported for fixed-point signals with
different biases.

4-60

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

nearest Fixed-Point
Designer

—

nextpow2 MATLAB —

nnz MATLAB —

noisepow Phased Array
System Toolbox

Does not support variable-size inputs.

nonzeros MATLAB —

norm MATLAB —

normcdf Statistics
Toolbox

—

normest MATLAB —

norminv Statistics
Toolbox

—

normpdf Statistics
Toolbox

—

normrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

normstat Statistics
Toolbox

—

not MATLAB —

npwgnthresh Phased Array
System Toolbox

Does not support variable-size inputs.

nthroot MATLAB —

null MATLAB • Might return a different basis thanMATLAB

• Does not support rational basis option
(second input)

4-61

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

num2hex MATLAB —

numberofelements Fixed-Point
Designer

numberofelements will be removed in a future
release. Use numel instead.

numel MATLAB —

numel Fixed-Point
Designer

—

numerictype Fixed-Point
Designer

• Fixed-point signals coming in to a MATLAB
Function block from Simulink are assigned
a numerictype object that is populated
with the signal’s data type and scaling
information.

• Returns the data type when the input is a
non-fixed-point signal.

• Use to create numerictype objects in the
generated code.

nuttallwin Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

ones MATLAB • Dimensions must be real, nonnegative,
integers.

or MATLAB —

orth MATLAB • Might return a different basis thanMATLAB

4-62

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

padarray Image
Processing
Toolbox

Supports only up to 3-D inputs.

Input arguments, padval and direction, are
expected to be compile-time constants.

parzenwin Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

pascal MATLAB —

pdf Statistics
Toolbox

—

permute MATLAB —

permute Fixed-Point
Designer

—

phitheta2azel Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2uv Phased Array
System Toolbox

Does not support variable-size inputs.

phitheta2uvpat Phased Array
System Toolbox

Does not support variable-size inputs.

physconst Phased Array
System Toolbox

Does not support variable-size inputs.

pi MATLAB —

pinv MATLAB —

4-63

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

planerot MATLAB —

plus MATLAB —

plus Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

poisscdf Statistics
Toolbox

—

poissinv Statistics
Toolbox

—

poisspdf Statistics
Toolbox

—

poissrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

poisstat Statistics
Toolbox

—

pol2cart MATLAB —

pol2circpol Phased Array
System Toolbox

Does not support variable-size inputs.

polellip Phased Array
System Toolbox

Does not support variable-size inputs.

polloss Phased Array
System Toolbox

Does not support variable-size inputs.

polratio Phased Array
System Toolbox

Does not support variable-size inputs.

polsignature Phased Array
System Toolbox

Does not support variable-size inputs.

4-64

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

poly MATLAB • Does not discard nonfinite input values

• Complex input produces complex output

poly2trellis Communications
System Toolbox

—

polyfit MATLAB —

polyval MATLAB —

pow2 Fixed-Point
Designer

—

power MATLAB • Generates an error during simulation.
Returns NaN in generated code when both X
and Y are real, but power(X,Y) is complex.
To get the complex result, make the input
value X complex by passing in complex(X).
For example, power(complex(X),Y).

• Generates an error during simulation.
Returns NaN in generated code when both X
and Y are real, but X .^ Y is complex. To get
the complex result, make the input value X
complex by using complex(X). For example,
complex(X).^Y.

power Fixed-Point
Designer

• The exponent input, k, must be constant. Its
value must be known at compile time.

prctile Statistics
Toolbox • “Automatic dimension restriction” on page

7-36

• If the output Y is a vector, the orientation
of Y differs from MATLAB when all of the
following are true:

- You do not supply the dim input.

- X is a variable-size array.

- X is not a variable-length vector.

- X is a vector at run time.

4-65

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

- The orientation of the vector X does not
match the orientation of the vector p.

In this case, the output Y matches the
orientation of X not the orientation of p.

primes MATLAB • The maximum double precision input is
2^32.

• The maximum single precision input is 2^24.

• The input n cannot have type int64 or
uint64.

prod MATLAB —

psi MATLAB —

pulsint Phased Array
System Toolbox

Does not support variable-size inputs.

qr MATLAB —

quad2d MATLAB
• Generates a warning if the size of the
internal storage arrays is not large enough.
If a warning occurs, a possible workaround
is to divide the region of integration into
pieces and sum the integrals over each piece.

quadgk MATLAB —

quantile Statistics
Toolbox

—

quantize Fixed-Point
Designer

—

quatconj Aerospace
Toolbox

—

quatdivide Aerospace
Toolbox

—

4-66

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

quatinv Aerospace
Toolbox

—

quatmod Aerospace
Toolbox

—

quatmultiply Aerospace
Toolbox

—

quatnorm Aerospace
Toolbox

—

quatnormalize Aerospace
Toolbox

—

radareqpow Phased Array
System Toolbox

Does not support variable-size inputs.

radareqrng Phased Array
System Toolbox

Does not support variable-size inputs.

radareqsnr Phased Array
System Toolbox

Does not support variable-size inputs.

radarvcd Phased Array
System Toolbox

Does not support variable-size inputs.

radialspeed Phased Array
System Toolbox

Does not support variable-size inputs.

rand MATLAB —

randg Statistics
Toolbox

—

randi MATLAB —

randn MATLAB —

random Statistics
Toolbox

—

randperm MATLAB —

range Fixed-Point
Designer

—

4-67

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

range2beat Phased Array
System Toolbox

Does not support variable-size inputs.

range2bw Phased Array
System Toolbox

Does not support variable-size inputs.

range2time Phased Array
System Toolbox

Does not support variable-size inputs.

rangeangle Phased Array
System Toolbox

Does not support variable-size inputs.

rank MATLAB —

raylcdf Statistics
Toolbox

—

raylinv Statistics
Toolbox

—

raylpdf Statistics
Toolbox

—

raylrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

raylstat Statistics
Toolbox

—

rcond MATLAB —

rdcoupling Phased Array
System Toolbox

Does not support variable-size inputs.

rdivide MATLAB —

4-68

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

rdivide Fixed-Point
Designer

—

real MATLAB —

real Fixed-Point
Designer

—

reallog MATLAB —

realmax MATLAB —

realmax Fixed-Point
Designer

—

realmin MATLAB —

realmin Fixed-Point
Designer

—

realpow MATLAB —

realsqrt MATLAB —

rectwin Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

reinterpretcast Fixed-Point
Designer

—

rem MATLAB • Performs the arithmetic using the output
class. Results might not match MATLAB
due to differences in rounding errors.

• If one of the inputs has type int64 or uint64,
then both inputs must have the same type.

4-69

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

removefimath Fixed-Point
Designer

—

repmat MATLAB —

repmat Fixed-Point
Designer

—

resample Signal
Processing
Toolbox

• Does not support variable-size inputs.

• The upsampling and downsampling factors
must be specified as constants. Expressions
or variables are allowed if their values do
not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

rescale Fixed-Point
Designer

—

reshape MATLAB —

reshape Fixed-Point
Designer

—

rng MATLAB • For library and executable code generation
targets, and for MEX targets when extrinsic
calls are disabled, supports only the
'default' input and these generator
inputs:

- 'twister'

- 'v4'

- 'v5normal'

For these targets, the output of s=rng in the
generated code differs from the MATLAB
output. You cannot return the output of

4-70

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

s=rng from the generated code and pass it
to rng in MATLAB.

• For MEX targets, if extrinsic calls are
enabled, you cannot access the data in the
structure returned by rng.

rocpfa Phased Array
System Toolbox

• Does not support variable-size inputs.

• Does not support
NonfluctuatingNoncoherent signal type.

rocsnr Phased Array
System Toolbox

• Does not support variable-size inputs.

• Does not support
NonfluctuatingNoncoherent signal type.

rootmusicdoa Phased Array
System Toolbox

Does not support variable-size inputs.

roots MATLAB • Output is variable size

• Output is complex

• Roots may not be in the same order as
MATLAB

• Roots of poorly conditioned polynomials may
not match MATLAB

rosser MATLAB —

rot90 MATLAB —

rotx Phased Array
System Toolbox

Does not support variable-size inputs.

roty Phased Array
System Toolbox

Does not support variable-size inputs.

rotz Phased Array
System Toolbox

Does not support variable-size inputs.

round MATLAB —

round Fixed-Point
Designer

—

4-71

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

rsf2csf MATLAB —

schur MATLAB Might sometimes return a different Schur
decomposition in generated code than in
MATLAB.

sec MATLAB —

secd MATLAB —

sech MATLAB —

sensorcov Phased Array
System Toolbox

Does not support variable-size inputs.

sensorsig Phased Array
System Toolbox

Does not support variable-size inputs.

setdiff MATLAB • When you do not specify the 'rows' option:

- Inputs A and B must be vectors. If you
specify the 'legacy' option, inputs A and
B must be row vectors.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- Do not use [] to represent the empty set.
Use a 1-by-0 or 0-by-1 input, for example,
zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'legacy' and
'rows' options, the output ia is a column
vector. If ia is empty, it is 0-by-1, never
0-by-0, even if the output C is 0-by-0.

4-72

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

• When the setOrder is 'sorted' or when you
specify the 'legacy' option, the inputs must
already be sorted in ascending order. The
first output, C, is sorted in ascending order.

• Complex inputs must be single or double.

• When one input is complex and the other
input is real, do one of the following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending
order (by absolute value). Suppose the
real input is x. Use sort(complex(x))or
sortrows(complex(x)).

setfimath Fixed-Point
Designer

—

setxor MATLAB • When you do not specify the 'rows' option:

- Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are

4-73

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when you
specify the 'legacy' flag, the inputs must
already be sorted in ascending order. The
first output, C, is sorted in ascending order.

• Complex inputs must be single or double.

• When one input is complex and the other
input is real, do one of the following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending
order (by absolute value). Suppose the
real input is x. Use sort(complex(x))or
sortrows(complex(x)).

sfi Fixed-Point
Designer

—

sgolay Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

shiftdim MATLAB Second argument must be a constant.

shnidman Phased Array
System Toolbox

Does not support variable-size inputs.

sign MATLAB —

sign Fixed-Point
Designer

—

4-74

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

sin MATLAB —

sin Fixed-Point
Designer

—

sind MATLAB —

single MATLAB —

single Fixed-Point
Designer

—

sinh MATLAB —

size MATLAB —

size Fixed-Point
Designer

—

skewness Statistics
Toolbox

—

sort MATLAB If the input is a complex type, sort orders the
output according to absolute value. When x
is a complex type that has all zero imaginary
parts, use sort(real(x)) to compute the sort
order for real types. See “Code Generation for
Complex Data” on page 6-4.

sort Fixed-Point
Designer

—

sortrows MATLAB If the input is a complex type, sortrows orders
the output according to absolute value. When x
is a complex type that has all zero imaginary
parts, use sortrows(real(x)) to compute the
sort order for real types. See “Code Generation
for Complex Data” on page 6-4.

sosfilt Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Computation performed at run time.

4-75

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

speed2dop Phased Array
System Toolbox

Does not support variable-size inputs.

sph2cart MATLAB —

sph2cartvec Phased Array
System Toolbox

Does not support variable-size inputs.

spsmooth Phased Array
System Toolbox

Does not support variable-size inputs.

squeeze MATLAB —

sqrt MATLAB • Generates an error during simulation and
returns NaN in generated code when the
input value x is real, but the output should
be complex. To get the complex result,
make the input value complex by passing in
complex(x).

sqrt Fixed-Point
Designer

• Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

sqrtm MATLAB —

std MATLAB —

steervec Phased Array
System Toolbox

Does not support variable-size inputs.

stokes Phased Array
System Toolbox

Does not support variable-size inputs.

storedInteger Fixed-Point
Designer

—

storedIntegerToDouble Fixed-Point
Designer

—

str2func MATLAB • String must be constant/known at compile
time

strcmp MATLAB —

4-76

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

strcmpi MATLAB • Input values from the char class must be in
the range 0-127.

stretchfreq2rng Phased Array
System Toolbox

Does not support variable-size inputs.

strfind MATLAB • Does not support cell arrays.

• If pattern does not exist in str, returns
zeros(1,0) not []. To check for an empty
return, use isempty.

• Inputs must be character row vectors.

strjust MATLAB —

strncmp MATLAB —

strncmpi MATLAB • Input values from the char class must be in
the range 0-127.

strrep MATLAB • Does not support cell arrays.

• If oldSubstr does not exist in origStr,
returns blanks(0). To check for an empty
return, use isempty.

• Inputs must be character row vectors.

strtok MATLAB —

strtrim MATLAB • Supports only inputs from the char class.

• Input values must be in the range 0-127.

struct MATLAB —

structfun MATLAB • Does not support the ErrorHandler option.

• The number of outputs must be less than or
equal to three.

sub Fixed-Point
Designer

—

4-77

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

sub2ind MATLAB • The first argument should be a valid size
vector. Size vectors for arrays with more
than intmax elements are not supported.

subsasgn Fixed-Point
Designer

—

subspace MATLAB —

subsref Fixed-Point
Designer

—

sum MATLAB —

sum Fixed-Point
Designer

• Variable-sized inputs are only supported
when the SumMode property of the governing
fimath is set to Specify precision or Keep
LSB.

surfacegamma Phased Array
System Toolbox

Does not support variable-size inputs.

surfclutterrcs Phased Array
System Toolbox

Does not support variable-size inputs.

SURFPoints Computer Vision
System Toolbox

—

svd MATLAB Uses a different SVD implementation than
MATLAB. As the singular value decomposition
is not unique, left and right singular vectors
might differ from those computed by MATLAB.

swapbytes MATLAB Inheritance of the class of the input to
swapbytes in a MATLAB Function block is
supported only when the class of the input is
double. For non-double inputs, the input port
data types must be specified, not inherited.

systemp Phased Array
System Toolbox

Does not support variable-size inputs.

tan MATLAB —

tand MATLAB —

4-78

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

tanh MATLAB —

taylorwin Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Inputs must be constant

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

tcdf Statistics
Toolbox

—

time2range Phased Array
System Toolbox

Does not support variable-size inputs.

times MATLAB —

times Fixed-Point
Designer

• Any non-fi input must be constant; that is,
its value must be known at compile time so
that it can be cast to a fi object.

• When you provide complex inputs to the
times function inside a MATLAB Function
block, you must declare the input as complex
before running the simulation. To do so, go
to the Ports and data manager and set
the Complexity parameter for all known
complex inputs to On.

tinv Statistics
Toolbox

—

toeplitz MATLAB —

tpdf Statistics
Toolbox

—

trace MATLAB —

trapz MATLAB —

4-79

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

transpose MATLAB —

transpose Fixed-Point
Designer

—

triang Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

tril MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

tril Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

triu MATLAB • If supplied, the argument representing the
order of the diagonal matrix must be a real
and scalar integer value.

triu Fixed-Point
Designer

• If supplied, the index, k, must be a real and
scalar integer value that is not a fi object.

trnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

true MATLAB • Dimensions must be real, nonnegative,
integers.

4-80

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

tstat Statistics
Toolbox

—

tukeywin Signal
Processing
Toolbox

• Does not support variable-size inputs.

• All inputs must be constant. Expressions or
variables are allowed if their values do not
change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

typecast MATLAB • Value of string input argument type must
be lower case

• You might receive a size error when you use
typecast with inheritance of input port data
types in MATLAB Function blocks. To avoid
this error, specify the block’s input port data
types explicitly.

ufi Fixed-Point
Designer

—

uint8, uint16, uint32,
uint64

MATLAB You cannot use uint64 in a :

• MATLAB Function block in a Simulink
model

• MATLAB function in a Stateflow chart

uint8, uint16, uint32,
uint64

Fixed-Point
Designer

You cannot use uint64 in a :

• MATLAB Function block in a Simulink
model

• MATLAB function in a Stateflow chart

uminus MATLAB —

4-81

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

uminus Fixed-Point
Designer

—

unidcdf Statistics
Toolbox

—

unidinv Statistics
Toolbox

—

unidpdf Statistics
Toolbox

—

unidrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

unidstat Statistics
Toolbox

—

unifcdf Statistics
Toolbox

—

unifinv Statistics
Toolbox

—

unifpdf Statistics
Toolbox

—

unifrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

unifstat Statistics
Toolbox

—

unigrid Phased Array
System Toolbox

Does not support variable-size inputs.

4-82

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

union MATLAB • When you do not specify the 'rows' option:

- Inputs A and B must be vectors with
the same orientation. If you specify the
'legacy' option, inputs A and B must be
row vectors.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'legacy' option
and the 'rows' option, the outputs ia and
ib are column vectors. If these outputs are
empty, they are 0-by-1, never 0-by-0, even if
the output C is 0-by-0.

• When the setOrder is 'sorted' or when you
specify the 'legacy' option, the inputs must
already be sorted in ascending order. The
first output, C, is sorted in ascending order.

• Complex inputs must be single or double.

• When one input is complex and the other
input is real, do one of the following:

- Set setOrder to 'stable'.

- Sort the real input in complex ascending
order (by absolute value). Suppose the
real input is x. Use sort(complex(x))or
sortrows(complex(x)).

4-83

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

unique MATLAB • When you do not specify the'rows' option:

- The input A must be a vector. If you
specify the 'legacy' option, the input A
must be a row vector.

- The first dimension of a variable-size
row vector must have fixed length 1.
The second dimension of a variable-size
column vector must have fixed length 1.

- The input [] is not supported. Use a
1-by-0 or 0-by-1 input, for example ,
zeros(1,0), to represent the empty set.

- If you specify the 'legacy' option, empty
outputs are row vectors, 1-by-0, never
0-by-0.

• When you specify both the 'rows' option
and the 'legacy'option, outputs ia and ic
are column vectors. If these outputs are
empty, they are 0-by-1, even if the output C
is 0-by-0.

• When the setOrder is 'sorted' or when
you specify the 'legacy' option, the input A
must already be sorted in ascending order.
The first output, C, is sorted in ascending
order.

• Complex inputs must be single or double.

unwrap MATLAB • Row vector input is only supported when the
first two inputs are vectors and nonscalar

• Performs arithmetic in the output class.
Hence, results might not match MATLAB
due to different rounding errors

4-84

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

upfirdn Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Filter coefficients, upsampling factor, and
downsampling factor must be constants.
Expressions or variables are allowed if their
values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

uplus MATLAB —

uplus Fixed-Point
Designer

—

upper MATLAB
• Supports only char inputs.

• Input values must be in the range 0-127.

upperbound Fixed-Point
Designer

—

upsample Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Either declare input n as constant, or use
the assert function in the calling function
to set upper bounds for n. For example,

assert(n<10)

uv2azel Phased Array
System Toolbox

Does not support variable-size inputs.

4-85

4 Functions Supported for Code Generation

Function Product Remarks and Limitations

uv2azelpat Phased Array
System Toolbox

Does not support variable-size inputs.

uv2phitheta Phased Array
System Toolbox

Does not support variable-size inputs.

uv2phithetapat Phased Array
System Toolbox

Does not support variable-size inputs.

val2ind Phased Array
System Toolbox

Does not support variable-size inputs.

vander MATLAB —

var MATLAB —

vertcat Fixed-Point
Designer

—

wblcdf Statistics
Toolbox

—

wblinv Statistics
Toolbox

—

wblpdf Statistics
Toolbox

—

wblrnd Statistics
Toolbox

Can return a different sequence of numbers
than MATLAB if either of the following is true:

• The output is nonscalar.

• An input parameter is invalid for the
distribution.

wblstat Statistics
Toolbox

—

wilkinson MATLAB —

4-86

Functions Supported for C/C++ Code Generation — Alphabetical List

Function Product Remarks and Limitations

xcorr Signal
Processing
Toolbox

• Does not support variable-size inputs.

• Does not support the case where A is a
matrix.

• Does not support partial (abbreviated)
strings of biased, unbiased, coeff, or none.

• Computation performed at run time.

xor MATLAB —

yulewalk Signal
Processing
Toolbox

• Does not support variable-size inputs.

• If specified, the order of recursion must be
a constant. Expressions or variables are
allowed if their values do not change.

Specifying constants

To specify a constant input for codegen, use
coder.Constant. For more information, see
“Specify Constant Inputs at the Command
Line” on page 19-48.

zeros MATLAB • Dimensions must be real, nonnegative,
integers.

zp2tf MATLAB —

zscore Statistics
Toolbox

—

4-87

4 Functions Supported for Code Generation

Functions Supported for C/C++ Code Generation —
Categorical List

In this section...

“Aerospace Toolbox Functions” on page 4-89

“Arithmetic Operator Functions” on page 4-90

“Bit-Wise Operation Functions” on page 4-90

“Casting Functions” on page 4-91

“Communications System Toolbox Functions” on page 4-91

“Complex Number Functions” on page 4-91

“Computer Vision System Toolbox Functions” on page 4-92

“Data and File Management Functions” on page 4-94

“Data Type Functions” on page 4-94

“Derivative and Integral Functions” on page 4-95

“Discrete Math Functions” on page 4-95

“Error Handling Functions” on page 4-96

“Exponential Functions” on page 4-96

“Filtering and Convolution Functions” on page 4-97

“Fixed-Point Designer Functions” on page 4-97

“Histogram Functions” on page 4-106

“Image Processing Toolbox Functions” on page 4-106

“Input and Output Functions” on page 4-108

“Interpolation and Computational Geometry Functions” on page 4-109

“Linear Algebra” on page 4-109

“Logical Operator Functions” on page 4-109

“MATLAB® Compiler™ Functions” on page 4-110

“MATLAB Desktop Environment Functions” on page 4-110

“Matrix and Array Functions” on page 4-110

4-88

Functions Supported for C/C++ Code Generation — Categorical List

In this section...

“Nonlinear Numerical Methods” on page 4-114

“Phased Array System Toolbox Functions” on page 4-115

“Polynomial Functions” on page 4-118

“Programming Utilities” on page 4-118

“Relational Operator Functions” on page 4-118

“Rounding and Remainder Functions” on page 4-119

“Set Functions” on page 4-119

“Signal Processing Functions in MATLAB” on page 4-120

“Signal Processing Toolbox Functions” on page 4-120

“Special Values” on page 4-125

“Specialized Math” on page 4-125

“Statistical Functions” on page 4-126

“Statistics Toolbox Functions” on page 4-126

“String Functions” on page 4-132

“Structure Functions” on page 4-133

“Trigonometric Functions” on page 4-133

Aerospace Toolbox Functions

Function Description

quatconj Calculate conjugate of quaternion

quatdivide Divide quaternion by another quaternion

quatinv Calculate inverse of quaternion

quatmod Calculate modulus of quaternion

quatmultiply Calculate product of two quaternions

quatnorm Calculate norm of quaternion

quatnormalize Normalize quaternion

4-89

4 Functions Supported for Code Generation

Arithmetic Operator Functions
See “Array vs. Matrix Operations” for detailed descriptions of the following
operator equivalent functions.

Function Description

ctranspose Complex conjugate transpose (')

idivide Integer division with rounding option

isa Determine if input is object of given class

ldivide Left array divide

minus Minus (-)

mldivide Left matrix divide (\)

mpower Equivalent of array power operator (.^)

mrdivide Right matrix divide

mtimes Matrix multiply (*)

plus Plus (+)

power Array power

rdivide Right array divide

times Array multiply

transpose Matrix transpose (')

uminus Unary minus (-)

uplus Unary plus (+)

Bit-Wise Operation Functions

Function Description

flintmax Largest consecutive integer in floating-point format

swapbytes Swap byte ordering

4-90

Functions Supported for C/C++ Code Generation — Categorical List

Casting Functions

Data Type Description

cast Cast variable to different data type

char Create character array (string)

class Query class of object argument

double Convert to double-precision floating point

int8, int16, int32,
int64

Convert to signed integer data type

logical Convert to Boolean true or false data type

single Convert to single-precision floating point

typecast Convert data types without changing underlying data

uint8, uint16,
uint32, uint64

Convert to unsigned integer data type

Communications System Toolbox Functions
Function Remarks/Limitations

bi2de —

de2bi —

istrellis —

poly2trellis —

Complex Number Functions

Function Description

complex Construct complex data from real and imaginary components

conj Return the conjugate of a complex number

imag Return the imaginary part of a complex number

isnumeric Return true for numeric arrays

4-91

4 Functions Supported for Code Generation

Function Description

isreal Return false (0) for a complex number

isscalar Return true if array is a scalar

real Return the real part of a complex number

unwrap Correct phase angles to produce smoother phase plots

Computer Vision System Toolbox Functions

Function Description

binaryFeatures Object for storing binary feature vectors

cornerPoints Object for storing corner points

detectFASTFeatures Find corners using FAST algorithm

detectMSERFeatures Detect MSER features

detectSURFFeatures Detect SURF features

disparity Disparity map between stereo images

4-92

Functions Supported for C/C++ Code Generation — Categorical List

Function Description

epipolarLine Compute epipolar lines for stereo images

estimateFundamentalMatrix Estimate fundamental matrix from corresponding
points in stereo image

estimateUncalibratedRectification Uncalibrated stereo rectification

extractFeatures Extract interest point descriptors

insertMarker Insert markers in image or video

insertShape Insert shapes in image or video

integralImage Compute integral image

isEpipoleInImage Determine whether image contains epipole

lineToBorderPoints Intersection points of lines in image and image
border

4-93

4 Functions Supported for Code Generation

Function Description

matchFeatures Find matching image features

MSERRegions Object for storing MSER regions

SURFPoints Object for storing SURF interest points

vision.KalmanFilter Kalman filter for object tracking

Data and File Management Functions

Function Description

computer Information about computer on which MATLAB software is running

fclose Close one or all open files

fopen Open file, or obtain information about open files

fprintf Write data to text file

load Load data from MAT-file into workspace

Data Type Functions

Function Description

deal Distribute inputs to outputs

iscell Determine whether input is cell array

4-94

Functions Supported for C/C++ Code Generation — Categorical List

Function Description

nargchk Validate number of input arguments

Note nargchk will be removed in a future release.

narginchk Validate number of input arguments

nargoutchk Validate number of output arguments

str2func Construct function handle from function name string

structfun Apply function to each field of scalar structure

Derivative and Integral Functions

Function Description

cumtrapz Cumulative trapezoidal numerical integration

del2 Discrete Laplacian

diff Differences and approximate derivatives

gradient Numerical gradient

trapz Trapezoidal numerical integration

Discrete Math Functions

Function Description

factor Return a row vector containing the prime factors of n

gcd Return an array containing the greatest common divisors of the
corresponding elements of integer arrays

isprime Array elements that are prime numbers

lcm Least common multiple of corresponding elements in arrays

nchoosek Binomial coefficient or all combinations

primes Generate list of prime numbers

4-95

4 Functions Supported for Code Generation

Error Handling Functions

Function Description

assert Generate error when condition is violated

error Display message and abort function

Exponential Functions

Function Description

exp Exponential

expm Matrix exponential

expm1 Compute exp(x)-1 accurately for small values of x

factorial Factorial function

log Natural logarithm

log2 Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

log10 Common (base 10) logarithm

log1p Compute log(1+x) accurately for small values of x

nextpow2 Next higher power of 2

nthroot Real nth root of real numbers

reallog Natural logarithm for nonnegative real arrays

realpow Array power for real-only output

realsqrt Square root for nonnegative real arrays

sqrt Square root

4-96

Functions Supported for C/C++ Code Generation — Categorical List

Filtering and Convolution Functions

Function Description

conv Convolution and polynomial multiplication

conv2 2-D convolution

convn N-D convolution

deconv Deconvolution and polynomial division

detrend Remove linear trends

filter 1-D digital filter

filter2 2-D digital filter

Fixed-Point Designer Functions
In addition to function-specific limitations listed in the table, the following
general limitations apply to the use of Fixed-Point Designer functions in
generated code or with fiaccel:

• fipref and quantizer objects are not supported.

• Word lengths greater than 128 bits are not supported.

• You cannot change the fimath or numerictype of a given fi variable after
that variable has been created.

• The boolean value of the DataTypeMode and DataType properties are not
supported.

• For all SumMode property settings other than FullPrecision, the
CastBeforeSum property must be set to true.

• You can use parallel for (parfor) loops in code compiled with fiaccel, but
those loops are treated like regular for loops.

• When you compile code containing fi objects with nontrivial slope and bias
scaling, you may see different results in generated code than you achieve
by running the same code in MATLAB.

• The general limitations of C/C++ code generated from MATLAB apply. For
more information, see “MATLAB Language Features Supported for C/C++
Code Generation” on page 2-12.

4-97

4 Functions Supported for Code Generation

Function Remarks/Limitations

abs N/A

accumneg N/A

accumpos N/A

add N/A

all N/A

any N/A

atan2 N/A

bitand Not supported for slope-bias scaled fi objects.

bitandreduce N/A

bitcmp N/A

bitconcat N/A

bitget N/A

bitor Not supported for slope-bias scaled fi objects.

bitorreduce N/A

bitreplicate N/A

bitrol N/A

bitror N/A

bitset N/A

bitshift N/A

bitsliceget N/A

bitsll Generated code may not handle out of range shifting.

bitsra Generated code may not handle out of range shifting.

bitsrl Generated code may not handle out of range shifting.

bitxor Not supported for slope-bias scaled fi objects.

bitxorreduce N/A

ceil N/A

4-98

Functions Supported for C/C++ Code Generation — Categorical List

Function Remarks/Limitations

complex N/A

conj N/A

conv • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

• For variable-sized signals, you may see different results between
generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

convergent N/A

cordicabs Variable-size signals are not supported.

cordicangle Variable-size signals are not supported.

cordicatan2 Variable-size signals are not supported.

cordiccart2pol Variable-size signals are not supported.

cordiccexp Variable-size signals are not supported.

cordiccos Variable-size signals are not supported.

cordicpol2cart Variable-size signals are not supported.

cordicrotate Variable-size signals are not supported.

cordicsin Variable-size signals are not supported.

cordicsincos Variable-size signals are not supported.

cos N/A

ctranspose N/A

diag If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

4-99

4 Functions Supported for Code Generation

Function Remarks/Limitations

divide • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Complex and imaginary divisors are not supported.

• Code generation in MATLAB does not support the syntax
T.divide(a,b).

double N/A

end N/A

eps • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and fi double
signals.

eq Not supported for fixed-point signals with different biases.

fi • The default constructor syntax without any input arguments is
not supported.

• If the numerictype is not fully specified, the input to fi must be
a constant, a fi, a single, or a built-in integer value. If the input
is a built-in double value, it must be a constant. This limitation
allows fi to autoscale its fraction length based on the known data
type of the input.

• numerictype object information must be available for
nonfixed-point Simulink inputs.

filter • Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to Specify precision or
Keep LSB.

fimath • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a fimath object. You define this object in
the MATLAB Function block dialog in the Model Explorer.

• Use to create fimath objects in the generated code.

fix N/A

fixed.Quantizer N/A

floor N/A

4-100

Functions Supported for C/C++ Code Generation — Categorical List

Function Remarks/Limitations

ge Not supported for fixed-point signals with different biases.

get The syntax structure = get(o) is not supported.

getlsb N/A

getmsb N/A

gt Not supported for fixed-point signals with different biases.

hdlram N/A

horzcat N/A

imag

int8, int16, int32,
int64

You cannot use int64 in a MATLAB Function block in a Simulink
model or in a MATLAB function in a Stateflow chart.

iscolumn N/A

isempty N/A

isequal N/A

isfi N/A

isfimath N/A

isfimathlocal N/A

isfinite N/A

isinf N/A

isnan N/A

isnumeric N/A

isnumerictype N/A

isreal N/A

isrow N/A

isscalar N/A

issigned N/A

isvector N/A

le Not supported for fixed-point signals with different biases.

4-101

4 Functions Supported for Code Generation

Function Remarks/Limitations

length N/A

logical N/A

lowerbound N/A

lsb • Supported for scalar fixed-point signals only.

• Supported for scalar, vector, and matrix, fi single and double
signals.

lt Not supported for fixed-point signals with different biases.

max N/A

mean N/A

median N/A

min N/A

minus Any non-fi input must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

mpower • When the exponent k is a variable and the input is a scalar,
the ProductMode property of the governing fimath must be
SpecifyPrecision.

• When the exponent k is a variable and the input is not
scalar, the SumMode property of the governing fimath must be
SpecifyPrecision.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
Keep LSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when
the first input, a, is nonscalar. However, when a is a scalar,

4-102

Functions Supported for C/C++ Code Generation — Categorical List

Function Remarks/Limitations

MATLAB computes the output using the ProductMode of the
governing fimath.

mpy When you provide complex inputs to the mpy function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and data
manager and set the Complexity parameter for all known complex
inputs to On.

mrdivide N/A

mtimes • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• Variable-sized inputs are only supported when the SumMode
property of the governing fimath is set to SpecifyPrecision or
KeepLSB.

• For variable-sized signals, you may see different results between
the generated code and MATLAB.

- In the generated code, the output for variable-sized signals is
computed using the SumMode property of the governing fimath.

- In MATLAB, the output for variable-sized signals is computed
using the SumMode property of the governing fimath when both
inputs are nonscalar. However, if either input is a scalar,
MATLAB computes the output using the ProductMode of the
governing fimath.

ndims N/A

ne Not supported for fixed-point signals with different biases.

nearest N/A

numberofelements numberofelements will be removed in a future release. Use numel
instead.

numel N/A

4-103

4 Functions Supported for Code Generation

Function Remarks/Limitations

numerictype • Fixed-point signals coming in to a MATLAB Function block from
Simulink are assigned a numerictype object that is populated
with the signal’s data type and scaling information.

• Returns the data type when the input is a nonfixed-point signal.

• Use to create numerictype objects in generated code.

permute N/A

plus Any non-fi inputs must be constant; that is, its value must be known
at compile time so that it can be cast to a fi object.

pow2 N/A

power When the exponent k is a variable, the ProductMode property of the
governing fimath must be SpecifyPrecision.

quantize N/A

range N/A

rdivide N/A

real N/A

realmax N/A

realmin N/A

reinterpretcast N/A

removefimath N/A

repmat N/A

rescale N/A

reshape N/A

round N/A

setfimath N/A

sfi N/A

sign N/A

sin N/A

4-104

Functions Supported for C/C++ Code Generation — Categorical List

Function Remarks/Limitations

single N/A

size N/A

sort N/A

sqrt • Complex and [Slope Bias] inputs error out.

• Negative inputs yield a 0 result.

storedInteger N/A

storedIntegerToDouble N/A

sub N/A

subsasgn N/A

subsref N/A

sum Variable-sized inputs are only supported when the SumMode property
of the governing fimath is set to Specify precision or Keep LSB.

times • Any non-fi input must be constant; that is, its value must be
known at compile time so that it can be cast to a fi object.

• When you provide complex inputs to the times function inside of a
MATLAB Function block, you must declare the input as complex
before running the simulation. To do so, go to the Ports and
data manager and set the Complexity parameter for all known
complex inputs to On.

transpose N/A

tril If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

triu If supplied, the index, k, must be a real and scalar integer value that
is not a fi object.

ufi N/A

uint8, uint16, uint32,
uint64

You cannot use uint64 in a MATLAB Function block in a Simulink
model or in a MATLAB function in a Stateflow chart.

4-105

4 Functions Supported for Code Generation

Function Remarks/Limitations

uminus N/A

uplus N/A

upperbound N/A

vertcat N/A

Histogram Functions

Function Description

hist Non-graphical histogram

histc Histogram count

Image Processing Toolbox Functions
You must have the MATLAB Coder and Image Processing Toolbox software
installed to generate C/C++ code from MATLAB for these functions.

Function Remarks/Limitations

bwlookup For best results, specify an input image of class logical.

bwmorph The text string specifying the operation must be a constant and, for
best results, specify an input image of class logical.

conndef All input arguments must be compile-time constants.

fspecial Allinputs must be compile-time constants. Expressions or variables
are allowed if their values do not change.

imcomplement Does not support int64 and uint64 data types.

4-106

Functions Supported for C/C++ Code Generation — Categorical List

Function Remarks/Limitations

imfill The optional input connectivity, conn and the string 'holes' must be
a compile time constants.

Supports only up to 3-D inputs. (No N-D support.)

The interactive mode to select points, imfill(BW,0,CONN) is not
supported in code generation.

locations can be a P-by-1 vector, in which case it contains the
linear indices of the starting locations. locations can also be a
P-by-ndims(I) matrix, in which case each row contains the array
indices of one of the starting locations. Once you select a format at
compile-time, you cannot change it at run-time. However, the number
of points in locations can be varied at run-time.

Generated code for this function uses a precompiled platform-specific
shared library.

imhmax The optional third input argument, conn, must be a compile-time
constant

Generated code for this function uses a precompiled platform-specific
shared library.

imhmin The optional third input argument, conn, must be a compile-time
constant

Generated code for this function uses a precompiled platform-specific
shared library.

imreconstruct The optional third input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled platform-specific
shared library.

imregionalmax The optional second input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled platform-specific
shared library.

4-107

http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/
http://www.mathworks.com/support/sysreq/current_release/

4 Functions Supported for Code Generation

Function Remarks/Limitations

imregionalmin The optional second input argument, conn, must be a compile-time
constant.

Generated code for this function uses a precompiled platform-specific
shared library.

iptcheckconn All input arguments must be compile-time constants.

label2rgb Referring to the standard syntax:

RGB = label2rgb(L, map, zerocolor, order)

• Submit at least two input arguments: the label matrix, L, and the
colormap matrix, map.

• map must be an n-by-3, double, colormap matrix. You cannot use a
string containing the name of a MATLAB colormap function or a
function handle of a colormap function.

• If you set the boundary color zerocolor to the same color as one of
the regions, label2rgb will not issue a warning.

• If you supply a value for order, it must be 'noshuffle'.

padarray Support only up to 3-D inputs.

Input arguments, padval and direction are expected to be
compile-time constants.

Input and Output Functions

Function Description

nargin Return the number of input arguments a user has supplied

nargout Return the number of output return values a user has requested

4-108

http://www.mathworks.com/support/sysreq/current_release/

Functions Supported for C/C++ Code Generation — Categorical List

Interpolation and Computational Geometry Functions

Function Description

cart2pol Transform Cartesian coordinates to polar or cylindrical

cart2sph Transform Cartesian coordinates to spherical

interp1 1-D data interpolation (table lookup)

interp2 2-D data interpolation (table lookup)

meshgrid Generate X and Y arrays for 3-D plots

pol2cart Transform polar or cylindrical coordinates to Cartesian

sph2cart Transform spherical coordinates to Cartesian

Linear Algebra

Function Description

linsolve Solve linear system of equations

null Null space

orth Range space of matrix

rsf2csf Convert real Schur form to complex Schur form

schur Schur decomposition

sqrtm Matrix square root

Logical Operator Functions

Function Description

and Logical AND (&&)

bitand Bitwise AND

bitcmp Bitwise complement

4-109

4 Functions Supported for Code Generation

Function Description

bitget Bit at specified position

bitor Bitwise OR

bitset Set bit at specified position

bitshift Shift bits specified number of places

bitxor Bitwise XOR

not Logical NOT (~)

or Logical OR (||)

xor Logical exclusive-OR

MATLAB Compiler Functions

Function Description

isdeployed Determine whether code is running in deployed or MATLAB mode

ismcc Test if code is running during compilation process (using mcc)

MATLAB Desktop Environment Functions

Function Description

ismac Determine if version is for Mac OS X platform

ispc Determine if version is for Windows (PC) platform

isunix Determine if version is for UNIX® platform

Matrix and Array Functions

Function Description

abs Return absolute value and complex magnitude of an array

all Test if all elements are nonzero

4-110

Functions Supported for C/C++ Code Generation — Categorical List

Function Description

angle Phase angle

any Test for any nonzero elements

blkdiag Construct block diagonal matrix from input arguments

bsxfun Applies element-by-element binary operation to two arrays with
singleton expansion enabled

cat Concatenate arrays along specified dimension

circshift Shift array circularly

compan Companion matrix

cond Condition number of a matrix with respect to inversion

cov Covariance matrix

cross Vector cross product

cumprod Cumulative product of array elements

cumsum Cumulative sum of array elements

det Matrix determinant

diag Return a matrix formed around the specified diagonal vector and the
specified diagonal (0, 1, 2,...) it occupies

diff Differences and approximate derivatives

dot Vector dot product

eig Eigenvalues and eigenvectors

eye Identity matrix

false Return an array of 0s for the specified dimensions

find Find indices and values of nonzero elements

flipdim Flip array along specified dimension

fliplr Flip matrix left to right

flipud Flip matrix up to down

full Convert sparse matrix to full matrix

hadamard Hadamard matrix

4-111

4 Functions Supported for Code Generation

Function Description

hankel Hankel matrix

hilb Hilbert matrix

ind2sub Subscripts from linear index

inv Inverse of a square matrix

invhilb Inverse of Hilbert matrix

ipermute Inverse permute dimensions of array

iscolumn True if input is a column vector

isempty Determine whether array is empty

isequal Test arrays for equality

isequaln Test arrays for equality, treating NaNs as equal

isfinite Detect finite elements of an array

isfloat Determine if input is floating-point array

isinf Detect infinite elements of an array

isinteger Determine if input is integer array

islogical Determine if input is logical array

ismatrix True if input is a matrix

isnan Detect NaN elements of an array

isrow True if input is a row vector

issparse Determine whether input is sparse

isvector Determine whether input is vector

kron Kronecker tensor product

length Return the length of a matrix

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced vectors

lu Matrix factorization

magic Magic square

4-112

Functions Supported for C/C++ Code Generation — Categorical List

Function Description

max Maximum elements of a matrix

min Minimum elements of a matrix

ndgrid Generate arrays for N-D functions and interpolation

ndims Number of dimensions

nnz Number of nonzero matrix elements

nonzeros Nonzero matrix elements

norm Vector and matrix norms

normest 2-norm estimate

numel Number of elements in array or subscripted array

ones Create a matrix of all 1s

pascal Pascal matrix

permute Rearrange dimensions of array

pinv Pseudoinverse of a matrix

planerot Givens plane rotation

prod Product of array element

qr Orthogonal-triangular decomposition

rand Uniformly distributed pseudorandom numbers

randi Uniformly distributed pseudorandom integers

randn Normally distributed random numbers

randperm Random permutation

rank Rank of matrix

rcond Matrix reciprocal condition number estimate

repmat Replicate and tile an array

reshape Reshape one array into the dimensions of another

rng Control random number generation

rosser Classic symmetric eigenvalue test problem

4-113

4 Functions Supported for Code Generation

Function Description

rot90 Rotate matrix 90 degrees

shiftdim Shift dimensions

sign Signum function

size Return the size of a matrix

sort Sort elements in ascending or descending order

sortrows Sort rows in ascending order

squeeze Remove singleton dimensions

sub2ind Single index from subscripts

subspace Angle between two subspaces

sum Sum of matrix elements

toeplitz Toeplitz matrix

trace Sum of diagonal elements

tril Extract lower triangular part

triu Extract upper triangular part

true Return an array of logical (Boolean) 1s for the specified dimensions

vander Vandermonde matrix

wilkinson Wilkinson’s eigenvalue test matrix

zeros Create a matrix of all zeros

Nonlinear Numerical Methods

Function Description

fzero Find root of continuous function of one variable

quad2d Numerically evaluate double integral over planar region

quadgk Numerically evaluate integral, adaptive Gauss-Kronrod quadrature

4-114

Functions Supported for C/C++ Code Generation — Categorical List

Phased Array System Toolbox Functions
Function Description

aictest Dimension of signal subspace

albersheim Required SNR using Albersheim’s equation

ambgfun Ambiguity function

aperture2gain Convert effective aperture to gain

az2broadside Convert azimuth angle to broadside angle

azel2phitheta Convert angles from azimuth/elevation form to phi/theta form

azel2phithetapat Convert radiation pattern from azimuth/elevation to phi/theta form

azel2uv Convert azimuth/elevation angles to u/v coordinates

azel2uvpat Convert radiation pattern from azimuth/elevation form to u/v form

azelaxes Spherical basis vectors in 3-by-3 matrix form

beat2range Convert beat frequency to range

billingsleyicm Billingsley’s intrinsic clutter motion (ICM) model

broadside2az Convert broadside angle to azimuth angle

cart2sphvec Convert vector from Cartesian components to spherical representation

cbfweights Conventional beamformer weights

circpol2pol Convert circular component representation of field to linear component
representation

dechirp Perform dechirp operation on FMCW signal

delayseq Delay or advance sequence

depressionang Depression angle of surface target

dop2speed Convert Doppler shift to speed

dopsteeringvec Doppler steering vector

effearthradius Effective earth radius

espritdoa Direction of arrival using TLS ESPRIT

fspl Free space path loss

gain2aperture Convert gain to effective aperture

4-115

4 Functions Supported for Code Generation

Function Description

global2localcoord Convert global to local coordinates

grazingang Grazing angle of surface target

horizonrange Horizon range

lcmvweights Narrowband linearly constrained minimum variance (LCMV)
beamformer weights

local2globalcoord Convert local to global coordinates

mdltest Dimension of signal subspace

mvdrweights Minimum variance distortionless response (MVDR) beamformer
weights

noisepow Receiver noise power

npwgnthresh Detection SNR threshold for signal in white Gaussian noise

phitheta2azel Convert angles from phi/theta form to azimuth/elevation form

phitheta2azelpat Convert radiation pattern from phi/theta form to azimuth/elevation
form

phitheta2uv Convert phi/theta angles to u/v coordinates

phitheta2uvpat Convert radiation pattern from phi/theta form to u/v form

physconst Physical constants

pol2circpol Convert linear component representation of field to circular component
representation

polellip Parameters of ellipse traced out by tip of a polarized field vector

polloss Polarization loss

polratio Ratio of vertical to horizontal linear polarization components of a field

polsignature Copolarization and cross-polarization signatures

pulsint Pulse integration

radareqpow Peak power estimate from radar equation

radareqrng Maximum theoretical range estimate

radareqsnr SNR estimate from radar equation

4-116

Functions Supported for C/C++ Code Generation — Categorical List

Function Description

radarvcd Vertical coverage diagram

radialspeed Relative radial speed

range2beat Convert range to beat frequency

range2bw Convert range resolution to required bandwidth

range2time Convert propagation distance to propagation time

rangeangle Range and angle calculation

rdcoupling Range Doppler coupling

rocpfa Receiver operating characteristic curves by false-alarm probability

rocsnr Receiver operating characteristic curves by SNR

rootmusicdoa Direction of arrival using Root MUSIC

rotx Rotation matrix for rotations around x-axis

roty Rotation matrix for rotations around y-axis

rotz Rotation matrix for rotations around z-axis

sensorcov Sensor spatial covariance matrix

sensorsig Simulate received signal at sensor array

shnidman Required SNR using Shnidman’s equation

speed2dop Convert speed to Doppler shift

sph2cartvec Convert vector from spherical basis components to Cartesian
components

spsmooth Spatial smoothing

steervec Steering vector

stokes Stokes parameters of polarized field

stretchfreq2rng Convert frequency offset to range

surfacegamma Gamma value for different terrains

surfclutterrcs Surface clutter radar cross section (RCS)

systemp Receiver system-noise temperature

time2range Convert propagation time to propagation distance

4-117

4 Functions Supported for Code Generation

Function Description

unigrid Uniform grid

uv2azel Convert u/v coordinates to azimuth/elevation angles

uv2azelpat Convert radiation pattern from u/v form to azimuth/elevation form

uv2phitheta Convert u/v coordinates to phi/theta angles

uv2phithetapat Convert radiation pattern from u/v form to phi/theta form

val2ind Uniform grid index

Polynomial Functions

Function Description

poly Polynomial with specified roots

polyfit Polynomial curve fitting

polyval Polynomial evaluation

roots Polynomial roots

Programming Utilities

Function Description

mfilename File name of currently running function

Relational Operator Functions

Function Description

eq Equal (==)

ge Greater than or equal to (>=)

gt Greater than (>)

le Less than or equal to (<=)

4-118

Functions Supported for C/C++ Code Generation — Categorical List

Function Description

lt Less than (<)

ne Not equal (~=)

Rounding and Remainder Functions

Function Description

ceil Round toward plus infinity

ceil Round toward positive infinity

convergent Round toward nearest integer with ties rounding to nearest even integer

fix Round toward zero

fix Round toward zero

floor Round toward minus infinity

floor Round toward negative infinity

mod Modulus (signed remainder after division)

nearest Round toward nearest integer with ties rounding toward positive infinity

rem Remainder after division

round Round toward nearest integer

round Round fi object toward nearest integer or round input data using
quantizer object

Set Functions

Function Description

intersect Set intersection of two arrays

ismember Array elements that are members of set array

issorted Determine whether set elements are in sorted order

setdiff Set difference of two arrays

4-119

4 Functions Supported for Code Generation

Function Description

setxor Set exclusive OR of two arrays

union Set union of two arrays

unique Unique values in array

Signal Processing Functions in MATLAB

Function Description

chol Cholesky factorization

conv Convolution and polynomial multiplication

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

fftn N-D discrete Fourier transform

fftshift Shift zero-frequency component to center of spectrum

filter Filter a data sequence using a digital filter that works for both real and
complex inputs

freqspace Frequency spacing for frequency response

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier transform

ifftn N-D inverse discrete Fourier transform

ifftshift Inverse discrete Fourier transform shift

svd Singular value decomposition

zp2tf Convert zero-pole-gain filter parameters to transfer function form

Signal Processing Toolbox Functions
These functions do not support variable-size inputs, you must define the size
and type of the function inputs. For more information, see “Specifying Inputs
in Code Generation from MATLAB ”.

4-120

Functions Supported for C/C++ Code Generation — Categorical List

Note Many Signal Processing Toolbox functions require constant inputs in
generated code. To specify a constant input for codegen, use coder.Constant.

Function Remarks/Limitations

barthannwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bartlett Window length must be a constant. Expressions or variables are
allowed if their values do not change.

besselap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

bitrevorder —

blackman Window length must be a constant. Expressions or variables are
allowed if their values do not change.

blackmanharris Window length must be a constant. Expressions or variables are
allowed if their values do not change.

bohmanwin Window length must be a constant. Expressions or variables are
allowed if their values do not change.

buttap Filter order must be a constant. Expressions or variables are allowed if
their values do not change.

butter Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

buttord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cfirpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb2ap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheb1ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

4-121

4 Functions Supported for Code Generation

Function Remarks/Limitations

cheb2ord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

chebwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby1 All Inputs must be constants. Expressions or variables are allowed if
their values do not change.

cheby2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

dct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

downsample —

dpss All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellip Inputs must be constant. Expressions or variables are allowed if their
values do not change.

ellipap All inputs must be constants. Expressions or variables are allowed if
their values do not change.

ellipord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

filtfilt Filter coefficients must be constants. Expressions or variables are
allowed if their values do not change.

fir1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fir2 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

fircls1 All inputs must be constants. Expressions or variables are allowed if
their values do not change.

4-122

Functions Supported for C/C++ Code Generation — Categorical List

Function Remarks/Limitations

firls All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firpm All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firpmord All inputs must be constants. Expressions or variables are allowed if
their values do not change.

firrcos All inputs must be constants. Expressions or variables are allowed if
their values do not change.

flattopwin All inputs must be constants. Expressions or variables are allowed if
their values do not change.

freqz freqz with no output arguments produces a plot only when the function
call terminates in a semicolon. See “freqzWith No Output Arguments”.

gaussfir All inputs must be constant. Expressions or variables are allowed if
their values do not change.

gausswin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hamming All inputs must be constant. Expressions or variables are allowed if
their values do not change.

hann All inputs must be constant. Expressions or variables are allowed if
their values do not change.

idct Length of transform dimension must be a power of two. If specified, the
pad or truncation value must be constant. Expressions or variables are
allowed if their values do not change.

intfilt All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiser All inputs must be constant. Expressions or variables are allowed if
their values do not change.

kaiserord —

levinson If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

4-123

4 Functions Supported for Code Generation

Function Remarks/Limitations

maxflat All inputs must be constant. Expressions or variables are allowed if
their values do not change.

nuttallwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

parzenwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

rectwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

resample The upsampling and downsampling factors must be specified as
constants. Expressions or variables are allowed if their values do not
change.

sgolay All inputs must be constant. Expressions or variables are allowed if
their values do not change.

sosfilt —

taylorwin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

triang All inputs must be constant. Expressions or variables are allowed if
their values do not change.

tukeywin All inputs must be constant. Expressions or variables are allowed if
their values do not change.

upfirdn • Filter coefficients, upsampling factor, and downsampling factor must
be constants. Expressions or variables are allowed if their values
do not change.

• Variable-size inputs are not supported.

upsample Either declare input n as constant, or use the assert function in the
calling function to set upper bounds for n. For example,

assert(n<10)

xcorr —

yulewalk If specified, the order of recursion must be a constant. Expressions or
variables are allowed if their values do not change.

4-124

Functions Supported for C/C++ Code Generation — Categorical List

Special Values

Symbol Description

eps Floating-point relative accuracy

inf IEEE® arithmetic representation for positive infinity

intmax Largest possible value of specified integer type

intmin Smallest possible value of specified integer type

NaN or nan Not a number

pi Ratio of the circumference to the diameter for a circle

realmax Largest positive floating-point number

realmin Smallest positive floating-point number

Specialized Math

Symbol Description

beta Beta function

betainc Incomplete beta function

betaincinv Beta inverse cumulative distribution function

betaln Logarithm of beta function

ellipke Complete elliptic integrals of first and second kind

erf Error function

erfc Complementary error function

erfcinv Inverse of complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

expint Exponential integral

gamma Gamma function

gammainc Incomplete gamma function

4-125

4 Functions Supported for Code Generation

Symbol Description

gammaincinv Inverse incomplete gamma function

gammaln Logarithm of the gamma function

psi Psi (polygamma) function

Statistical Functions

Function Description

corrcoef Correlation coefficients

mean Average or mean value of array

median Median value of array

mode Most frequent values in array

std Standard deviation

var Variance

Statistics Toolbox Functions

Function Description

betacdf Beta cumulative distributive function

betainv Beta inverse cumulative distribution function

betapdf Beta probability density function

betarnd Beta random numbers

betastat Beta mean and variance

binocdf Binomial cumulative distribution function

binoinv Binomial inverse cumulative distribution function

binopdf Binomial probability density function

binornd Binomial random numbers

binostat Binomial mean and variance

4-126

Functions Supported for C/C++ Code Generation — Categorical List

Function Description

cdf Cumulative distribution function of probability distribution object

chi2cdf Chi-square cumulative distribution function

chi2inv Chi-square inverse cumulative distribution function

chi2pdf Chi-square probability density function

chi2rnd Chi-square random numbers

chi2stat Chi-square mean and variance

evcdf Extreme value cumulative distribution function

evinv Extreme value inverse cumulative distribution

evpdf Extreme value probability density function

evrnd Extreme value random numbers

evstat Extreme value mean and variance

expcdf Exponential cumulative distribution function

expinv Exponential inverse cumulative distribution function

exppdf Exponential probability density function

exprnd Exponential random numbers

expstat Exponential mean and variance

fcdf F cumulative distribution function

finv F inverse cumulative distribution function

fpdf F probability density function

frnd F random numbers

fstat F mean and variance

gamcdf Gamma cumulative distribution function

gaminv Gamma inverse cumulative distribution function

gampdf Gamma probability density function

gamrnd Gamma random numbers

gamstat Gamma mean and variance

4-127

4 Functions Supported for Code Generation

Function Description

geocdf Geometric cumulative distribution function

geoinv Geometric inverse cumulative distribution function

geomean Geometric mean

geopdf Geometric probability density function

geornd Geometric random numbers

geostat Geometric mean and variance

gevcdf Generalized extreme value cumulative distribution function

gevinv Generalized extreme value inverse cumulative distribution function

gevpdf Generalized extreme value probability density function

gevrnd Generalized extreme value random numbers

gevstat Generalized extreme value mean and variance

gpcdf Generalized Pareto cumulative distribution function

gpinv Generalized Pareto inverse cumulative distribution function

gppdf Generalized Pareto probability density function

gprnd Generalized Pareto random numbers

gpstat Generalized Pareto mean and variance

harmmean Harmonic mean

hygecdf Hypergeometric cumulative distribution function

hygeinv Hypergeometric inverse cumulative distribution function

hygepdf Hypergeometric probability density function

hygernd Hypergeometric random numbers

hygestat Hypergeometric mean and variance

icdf Inverse cumulative distribution function of probability distribution
object

iqr Interquartile range of probability distribution object

4-128

Functions Supported for C/C++ Code Generation — Categorical List

Function Description

kurtosis Kurtosis

logncdf Lognormal cumulative distribution function

logninv Lognormal inverse cumulative distribution function

lognpdf Lognormal probability density function

lognrnd Lognormal random numbers

lognstat Lognormal mean and variance

mad Mean or median absolute deviation

mnpdf Multinomial probability density function

moment Central moments

nancov Covariance ignoring NaN values

nanmax Maximum ignoring NaN values

nanmean Mean ignoring NaN values

nanmedian Median ignoring NaN values

nanmin Minimum ignoring NaN values

nanstd Standard deviation ignoring NaN values

nansum Sum ignoring NaN values

nanvar Variance, ignoring NaN values

nbincdf Negative binomial cumulative distribution function

nbininv Negative binomial inverse cumulative distribution function

nbinpdf Negative binomial probability density function

nbinrnd Negative binomial random numbers

nbinstat Negative binomial mean and variance

ncfcdf Noncentral F cumulative distribution function

ncfinv Noncentral F inverse cumulative distribution function

ncfpdf Noncentral F probability density function

ncfrnd Noncentral F random numbers

4-129

4 Functions Supported for Code Generation

Function Description

ncfstat Noncentral F mean and variance

nctcdf Noncentral t cumulative distribution function

nctinv Noncentral t inverse cumulative distribution function

nctpdf Noncentral t probability density function

nctrnd Noncentral t random numbers

nctstat Noncentral t mean and variance

ncx2cdf Noncentral chi-square cumulative distribution function

ncx2rnd Noncentral chi-square random numbers

ncx2stat Noncentral chi-square mean and variance

normcdf Normal cumulative distribution function

norminv Normal inverse cumulative distribution function

normpdf Normal probability density function

normrnd Normal random numbers

normstat Normal mean and variance

pdf Probability density function of probability distribution object

poisscdf Poisson cumulative distribution function

poissinv Poisson inverse cumulative distribution function

poisspdf Poisson probability density function

poissrnd Poisson random numbers

poisstat Poisson mean and variance

prctile Percentiles of a data set

quantile Quantiles of a data set

randg Gamma random numbers with unit scale

random Random numbers

raylcdf Rayleigh cumulative distribution function

raylinv Rayleigh inverse cumulative distribution function

4-130

Functions Supported for C/C++ Code Generation — Categorical List

Function Description

raylpdf Rayleigh probability density function

raylrnd Rayleigh random numbers

raylstat Rayleigh mean and variance

skewness Skewness

tcdf Student’s t cumulative distribution function

tinv Student’s t inverse cumulative distribution function

tpdf Student’s t probability density function

trnd Student’s t random numbers

tstat Student’s t mean and variance

unidcdf Discrete uniform cumulative distribution function

unidinv Discrete uniform inverse cumulative distribution function

unidpdf Discrete uniform probability density function

unidrnd Discrete uniform random numbers

unidstat Discrete uniform mean and variance

unifcdf Continuous uniform cumulative distribution function

unifinv Continuous uniform inverse cumulative distribution function

unifpdf Continuous uniform probability density function

unifrnd Continuous uniform random numbers

unifstat Continuous uniform mean and variance

wblcdf Weibull cumulative distribution function

wblinv Weibull inverse cumulative distribution function

wblpdf Weibull probability density function

wblrnd Weibull random numbers

wblstat Weibull mean and variance

zscore Standardized z-scores

4-131

4 Functions Supported for Code Generation

String Functions

Function Description

bin2dec Convert binary number string to decimal number

bitmax Maximum double-precision floating-point integer

blanks Create string of blank characters

char Create character array (string)

deblank Strip trailing blanks from end of string

dec2bin Convert decimal to binary number in string

dec2hex Convert decimal to hexadecimal number in string

hex2dec Convert hexadecimal number string to decimal number

hex2num Convert hexadecimal number string to double-precision number

ischar True for character array (string)

isletter Array elements that are alphabetic letters

isspace Array elements that are space characters

isstrprop Determine whether string is of specified category

lower Convert string to lowercase

num2hex Convert singles and doubles to IEEE hexadecimal strings

strcmp Compare strings (case sensitive)

strcmpi Compare strings (case insensitive)

strfind Find one string within another

strjust Justify character array

strncmp Compare first n characters of strings (case sensitive)

strncmpi Compare first n characters of strings (case insensitive)

strrep Find and replace substring

strtok Selected parts of string

strtrim Remove leading and trailing white space from string

upper Convert string to uppercase

4-132

Functions Supported for C/C++ Code Generation — Categorical List

Structure Functions

Function Description

isfield Determine whether input is structure array field

struct Create structure

isstruct Determine whether input is a structure

Trigonometric Functions

Function Description

acos Inverse cosine

acosd Inverse cosine; result in degrees

acosh Inverse hyperbolic cosine

acot Inverse cotangent; result in radians

acotd Inverse cotangent; result in degrees

acoth Inverse hyperbolic cotangent

acsc Inverse cosecant; result in radians

acscd Inverse cosecant; result in degrees

acsch Inverse cosecant and inverse hyperbolic cosecant

asec Inverse secant; result in radians

asecd Inverse secant; result in degrees

asech Inverse hyperbolic secant

asin Inverse sine

asinh Inverse hyperbolic sine

atan Inverse tangent

atan2 Four quadrant inverse tangent

atan2d Four-quadrant inverse tangent, result in degrees

atand Inverse tangent; result in degrees

4-133

4 Functions Supported for Code Generation

Function Description

atanh Inverse hyperbolic tangent

cos Cosine

cosd Cosine; result in degrees

cosh Hyperbolic cosine

cot Cotangent; result in radians

cotd Cotangent; result in degrees

coth Hyperbolic cotangent

csc Cosecant; result in radians

cscd Cosecant; result in degrees

csch Hyperbolic cosecant

hypot Square root of sum of squares

sec Secant; result in radians

secd Secant; result in degrees

sech Hyperbolic secant

sin Sine

sind Sine; result in degrees

sinh Hyperbolic sine

tan Tangent

tand Tangent; result in degrees

tanh Hyperbolic tangent

4-134

5

Defining MATLAB
Variables for C/C++ Code
Generation

• “Variables Definition for Code Generation” on page 5-2

• “Best Practices for Defining Variables for C/C++ Code Generation” on
page 5-3

• “Eliminate Redundant Copies of Variables in Generated Code” on page 5-7

• “Reassignment of Variable Properties” on page 5-9

• “Define and Initialize Persistent Variables” on page 5-10

• “Reuse the Same Variable with Different Properties” on page 5-11

• “Avoid Overflows in for-Loops” on page 5-16

• “Supported Variable Types” on page 5-18

5 Defining MATLAB® Variables for C/C++ Code Generation

Variables Definition for Code Generation
In the MATLAB language, variables can change their properties dynamically
at run time so you can use the same variable to hold a value of any class, size,
or complexity. For example, the following code works in MATLAB:

function x = foo(c) %#codegen
if(c>0)

x = 0;
else

x = [1 2 3];
end
disp(x);
end

However, statically-typed languages like C must be able to determine variable
properties at compile time. Therefore, for C/C++ code generation, you must
explicitly define the class, size, and complexity of variables in MATLAB
source code before using them. For example, rewrite the above source code
with a definition for x:

function x = foo(c) %#codegen
x = zeros(1,3);
if(c>0)

x = 0;
else

x = [1 2 3];
end
disp(x);
end

For more information, see “Best Practices for Defining Variables for C/C++
Code Generation” on page 5-3.

5-2

Best Practices for Defining Variables for C/C++ Code Generation

Best Practices for Defining Variables for C/C++ Code
Generation

In this section...

“Define Variables By Assignment Before Using Them” on page 5-3

“Use Caution When Reassigning Variables” on page 5-6

“Use Type Cast Operators in Variable Definitions” on page 5-6

“Define Matrices Before Assigning Indexed Variables” on page 5-6

Define Variables By Assignment Before Using Them
For C/C++ code generation, you should explicitly and unambiguously define
the class, size, and complexity of variables before using them in operations or
returning them as outputs. Define variables by assignment, but note that the
assignment copies not only the value, but also the size, class, and complexity
represented by that value to the new variable. For example:

Assignment: Defines:

a = 14.7; a as a real double scalar.

b = a; b with properties of a (real double
scalar).

c = zeros(5,2); c as a real 5-by-2 array of doubles.

d = [1 2 3 4 5; 6 7 8 9 0]; d as a real 5-by-2 array of doubles.

y = int16(3); y as a real 16-bit integer scalar.

Define properties this way so that the variable is defined on the required
execution paths during C/C++ code generation (see Defining a Variable for
Multiple Execution Paths on page 5-4).

The data that you assign to a variable can be a scalar, matrix, or structure. If
your variable is a structure, define the properties of each field explicitly (see
Defining Fields in a Structure on page 5-5).

5-3

5 Defining MATLAB® Variables for C/C++ Code Generation

Initializing the new variable to the value of the assigned data sometimes
results in redundant copies in the generated code. To avoid redundant
copies, you can define variables without initializing their values by using the
coder.nullcopy construct as described in “Eliminate Redundant Copies of
Variables in Generated Code” on page 5-7.

When you define variables, they are local by default; they do not persist
between function calls. To make variables persistent, see “Define and
Initialize Persistent Variables” on page 5-10.

Defining a Variable for Multiple Execution Paths

Consider the following MATLAB code:

...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

Here, x is assigned only if c > 0 and used only when c > 0. This code
works in MATLAB, but generates a compilation error during code generation
because it detects that x is undefined on some execution paths (when c <= 0),.

To make this code suitable for code generation, define x before using it:

x = 0;
...
if c > 0

x = 11;
end
% Later in your code ...
if c > 0

use(x);
end
...

5-4

Best Practices for Defining Variables for C/C++ Code Generation

Defining Fields in a Structure

Consider the following MATLAB code:

...
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Try to use s
use(s);
...

Here, the first part of the if statement uses only the field a, and the else
clause uses fields a and b. This code works in MATLAB, but generates a
compilation error during C/C++ code generation because it detects a structure
type mismatch. To prevent this error, do not add fields to a structure after
you perform certain operations on the structure. For more information, see
“Structure Definition for Code Generation” on page 8-2.

To make this code suitable for C/C++ code generation, define all fields of
s before using it.

...
% Define all fields in structure s
s = struct(a ,0, b , 0);
if c > 0

s.a = 11;
disp(s);

else
s.a = 12;
s.b = 12;

end
% Use s
use(s);
...

5-5

5 Defining MATLAB® Variables for C/C++ Code Generation

Use Caution When Reassigning Variables
In general, you should adhere to the "one variable/one type" rule for C/C++
code generation; that is, each variable must have a specific class, size and
complexity. Generally, if you reassign variable properties after the initial
assignment, you get a compilation error during code generation, but there are
exceptions, as described in “Reassignment of Variable Properties” on page 5-9.

Use Type Cast Operators in Variable Definitions
By default, constants are of type double. To define variables of other types,
you can use type cast operators in variable definitions. For example, the
following code defines variable y as an integer:

...
x = 15; % x is of type double by default.
y = uint8(x); % y has the value of x, but cast to uint8.
...

Define Matrices Before Assigning Indexed Variables
When generating C/C++ code from MATLAB, you cannot grow a variable by
writing into an element beyond its current size. Such indexing operations
produce run-time errors. You must define the matrix first before assigning
values to its elements.

For example, the following initial assignment is not allowed for code
generation:

g(3,2) = 14.6; % Not allowed for creating g
% OK for assigning value once created

For more information about indexing matrices, see “Incompatibility with
MATLAB in Matrix Indexing Operations for Code Generation” on page 7-33.

5-6

Eliminate Redundant Copies of Variables in Generated Code

Eliminate Redundant Copies of Variables in Generated
Code

In this section...

“When Redundant Copies Occur” on page 5-7

“How to Eliminate Redundant Copies by Defining Uninitialized Variables”
on page 5-7

“Defining Uninitialized Variables” on page 5-8

When Redundant Copies Occur
During C/C++ code generation, MATLAB checks for statements that attempt
to access uninitialized memory. If it detects execution paths where a variable
is used but is potentially not defined, it generates a compile-time error. To
prevent these errors, define variables by assignment before using them in
operations or returning them as function outputs.

Note, however, that variable assignments not only copy the properties of the
assigned data to the new variable, but also initialize the new variable to the
assigned value. This forced initialization sometimes results in redundant
copies in C/C++ code. To eliminate redundant copies, define uninitialized
variables by using the coder.nullcopy function, as described in “How to
Eliminate Redundant Copies by Defining Uninitialized Variables” on page 5-7.

How to Eliminate Redundant Copies by Defining
Uninitialized Variables
1 Define the variable with coder.nullcopy.

2 Initialize the variable before reading it.

When the uninitialized variable is an array, you must initialize all of its
elements before passing the array as an input to a function or operator
— even if the function or operator does not read from the uninitialized
portion of the array.

5-7

5 Defining MATLAB® Variables for C/C++ Code Generation

What happens if you access uninitialized data?

Uninitialized memory contains arbitrary values. Therefore, accessing
uninitialized data may lead to segmentation violations or nondeterministic
program behavior (different runs of the same program may yield
inconsistent results).

Defining Uninitialized Variables
In the following code, the assignment statement X = zeros(1,N) not only
defines X to be a 1-by-5 vector of real doubles, but also initializes each element
of X to zero.

function X = fcn %#codegen

N = 5;
X = zeros(1,N);
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

This forced initialization creates an extra copy in the generated code. To
eliminate this overhead, use coder.nullcopy in the definition of X:

function X = fcn2 %#codegen

N = 5;
X = coder.nullcopy(zeros(1,N));
for i = 1:N

if mod(i,2) == 0
X(i) = i;

else
X(i) = 0;

end
end

5-8

Reassignment of Variable Properties

Reassignment of Variable Properties
For C/C++ code generation, there are certain variables that you can reassign
after the initial assignment with a value of different class, size, or complexity:

Dynamically sized variables

A variable can hold values that have the same class and complexity but
different sizes. If the size of the initial assignment is not constant, the
variable is dynamically sized in generated code. For more information, see
“Variable-Size Data”.

Variables reused in the code for different purposes

You can reassign the type (class, size, and complexity) of a variable after the
initial assignment if each occurrence of the variable can have only one type.
In this case, the variable is renamed in the generated code to create multiple
independent variables. For more information, see “Reuse the Same Variable
with Different Properties” on page 5-11.

5-9

5 Defining MATLAB® Variables for C/C++ Code Generation

Define and Initialize Persistent Variables
Persistent variables are local to the function in which they are defined,
but they retain their values in memory between calls to the function. To
define persistent variables for C/C++ code generation, use the persistent
statement, as in this example:

persistent PROD_X;

The definition should appear at the top of the function body, after the
header and comments, but before the first use of the variable. During code
generation, the value of the persistent variable is initialized to an empty
matrix by default. You can assign your own value after the definition by using
the isempty statement, as in this example:

function findProduct(inputvalue) %#codegen
persistent PROD_X

if isempty(PROD_X)
PROD_X = 1;

end
PROD_X = PROD_X * inputvalue;
end

5-10

Reuse the Same Variable with Different Properties

Reuse the Same Variable with Different Properties

In this section...

“When You Can Reuse the Same Variable with Different Properties” on
page 5-11

“When You Cannot Reuse Variables” on page 5-12

“Limitations of Variable Reuse” on page 5-14

When You Can Reuse the Same Variable with
Different Properties
You can reuse (reassign) an input, output, or local variable with different
class, size, or complexity if MATLAB can unambiguously determine the
properties of each occurrence of this variable during C/C++ code generation.
If so, MATLAB creates separate uniquely named local variables in the
generated code. You can view these renamed variables in the code generation
report (see “Viewing Variables in Your MATLAB Code” on page 19-182).

A common example of variable reuse is in if-elseif-else or switch-case
statements. For example, the following function example1 first uses the
variable t in an if statement, where it holds a scalar double, then reuses t
outside the if statement to hold a vector of doubles.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);
y = sum(u(t(2:end-1)));

To compile this example and see how MATLAB renames the reused variable t,
see Variable Reuse in an if Statement on page 5-12.

5-11

5 Defining MATLAB® Variables for C/C++ Code Generation

When You Cannot Reuse Variables
You cannot reuse (reassign) variables if it is not possible to determine the
class, size, and complexity of an occurrence of a variable unambiguously
during code generation. In this case, variables cannot be renamed and a
compilation error occurs.

For example, the following example2 function assigns a fixed-point value to
x in the if statement and reuses x to store a matrix of doubles in the else
clause. It then uses x after the if-else statement. This function generates a
compilation error because after the if-else statement, variable x can have
different properties depending on which if-else clause executes.

function y = example2(use_fixpoint, data) %#codegen
if use_fixpoint
% x is fixed-point

x = fi(data, 1, 12, 3);
else

% x is a matrix of doubles
x = data;

end
% When x is reused here, it is not possible to determine its
% class, size, and complexity
t = sum(sum(x));
y = t > 0;

end

Variable Reuse in an if Statement

To see how MATLAB renames a reused variable t:

1 Create a MATLAB file example1.m containing the following code.

function y = example1(u) %#codegen
if all(all(u>0))

% First, t is used to hold a scalar double value
t = mean(mean(u)) / numel(u);
u = u - t;

end
% t is reused to hold a vector of doubles
t = find(u > 0);

5-12

Reuse the Same Variable with Different Properties

y = sum(u(t(2:end-1)));
end

2 Compile example1.

For example, to generate a MEX function, enter:

codegen -o example1x -report example1.m -args {ones(5,5)}

Note codegen requires a MATLAB Coder license.

When the compilation is complete, codegen generates a MEX function,
example1x in the current folder, and provides a link to the code generation
report.

3 Open the code generation report.

4 In the MATLAB code pane of the code generation report, place your pointer
over the variable t inside the if statement.

The code generation report highlights both instances of t in the if
statement because they share the same class, size, and complexity. It
displays the data type information for t at this point in the code. Here,
t is a scalar double.

5 In the MATLAB code pane of the report, place your pointer over the
variable t outside the for-loop.

5-13

5 Defining MATLAB® Variables for C/C++ Code Generation

This time, the report highlights both instances of t outside the if
statement. The report indicates that tmight hold up to 25 doubles. The size
of t is :25, that is, a column vector containing a maximum of 25 doubles.

6 Click the Variables tab to view the list of variables used in example1.

The report displays a list of the variables in example1. There are two
uniquely named local variables t>1 and t>2.

7 In the list of variables, place your pointer over t>1.

The code generation report highlights both instances of t in the if
statement.

8 In the list of variables, place your pointer over t>2

The code generation report highlights both instances of t outside the if
statement.

Limitations of Variable Reuse
The following variables cannot be renamed in generated code:

• Persistent variables.

• Global variables.

• Variables passed to C code using coder.ref, coder.rref, coder.wref.

• Variables whose size is set using coder.varsize.

• Variables whose names are controlled using coder.cstructname.

• The index variable of a for-loop when it is used inside the loop body.

5-14

Reuse the Same Variable with Different Properties

• The block outputs of a MATLAB Function block in a Simulink model.

• Chart-owned variables of a MATLAB function in a Stateflow chart.

5-15

5 Defining MATLAB® Variables for C/C++ Code Generation

Avoid Overflows in for-Loops
When memory integrity checks are enabled, if the code generation software
detects that a loop variable might overflow on the last iteration of the
for-loop, it reports an error.

To avoid this error, use the workarounds provided in the following table.

Loop conditions causing the
error

Workaround

• The loop counter increments by 1

• The end value equals the
maximum value of the integer
type

• The loop is not covering the full
range of the integer type

Rewrite the loop so that the end
value is not equal to the maximum
value of the integer type. For
example, replace:

N=intmax('int16')
for k=N-10:N

with:

for k=1:10

• The loop counter decrements by 1

• The end value equals the
minimum value of the integer
type

• The loop is not covering the full
range of the integer type

Rewrite the loop so that the end
value is not equal to the minimum
value of the integer type. For
example, replace:

N=intmin('int32')
for k=N+10:-1:N

with:

for k=10:-1:1

5-16

Avoid Overflows in for-Loops

Loop conditions causing the
error

Workaround

• The loop counter increments or
decrements by 1

• The start value equals the
minimum or maximum value of
the integer type

• The end value equals the
maximum or minimum value of
the integer type

The loop covers the full range of the
integer type.

Rewrite the loop casting the type
of the loop counter start, step, and
end values to a bigger integer or to
double For example, rewrite:

M= intmin('int16');
N= intmax('int16');
for k=M:N
% Loop body

end

to

M= intmin('int16');
N= intmax('int16');
for k=int32(M):int32(N)
% Loop body

end

• The loop counter increments or
decrements by a value not equal
to 1

• On last loop iteration, the loop
variable value is not equal to the
end value

Note The software error checking
is conservative. It may incorrectly
report a loop as being potentially
infinite.

Rewrite the loop so that the loop
variable on the last loop iteration is
equal to the end value.

5-17

5 Defining MATLAB® Variables for C/C++ Code Generation

Supported Variable Types
You can use the following data types for C/C++ code generation from
MATLAB:

Type Description

char Character array (string)

complex Complex data. Cast function takes real and imaginary
components

double Double-precision floating point

int8, int16, int32,
int64

Signed integer

logical Boolean true or false

single Single-precision floating point

struct Structure

uint8, uint16,
uint32, uint64

Unsigned integer

Fixed-point See “Fixed-Point Data Types”.

5-18

6

Defining Data for Code
Generation

• “Data Definition for Code Generation” on page 6-2

• “Code Generation for Complex Data” on page 6-4

• “Code Generation for Characters” on page 6-7

6 Defining Data for Code Generation

Data Definition for Code Generation
To generate efficient standalone code, you must define the following types
and classes of data differently than you normally would when running your
code in the MATLAB environment:

Data What’s Different More Information

Complex numbers • Complexity of
variables must be set
at time of assignment
and before first use

• Expressions
containing a complex
number or variable
evaluate to a complex
result, even if the
result is zero

Note Because
MATLAB does not
support complex
integer arithmetic,
you cannot generate
code for functions that
use complex integer
arithmetic

“Code Generation for
Complex Data” on page
6-4

Characters Restricted to 8 bits of
precision

“Code Generation for
Characters” on page 6-7

6-2

Data Definition for Code Generation

Data What’s Different More Information

Enumerated data • Supports
integer-based
enumerated types
only

• Restricted use in
switch statements
and for-loops

“Enumerated Data”

Function handles • Function handles
must be scalar values

• Same bound variable
cannot reference
different function
handles

• Cannot pass function
handles to or from
primary or extrinsic
functions

• Cannot view function
handles from the
debugger

“Function Handles”

6-3

6 Defining Data for Code Generation

Code Generation for Complex Data

In this section...

“Restrictions When Defining Complex Variables” on page 6-4

“Expressions With Complex Operands Yield Complex Results” on page 6-5

Restrictions When Defining Complex Variables
For code generation, you must set the complexity of variables at the time of
assignment, either by assigning a complex constant or using the complex
function, as in these examples:

x = 5 + 6i; % x is a complex number by assignment.
y = 7 + 8j; % y is a complex number by assignment.
x = complex(5,6); % x is the complex number 5 + 6i.

Once you set the type and size of a variable, you cannot cast it to another
type or size. In the following example, the variable x is defined as complex
and stays complex:

x = 1 + 2i; % Defines x as a complex variable.
y = int16(x); % Real and imaginary parts of y are int16.
x = 3; % x now has the value 3 + 0i.

Mismatches can also occur when you assign a real operand the complex result
of an operation:

z = 3; % Sets type of z to double (real)
z = 3 + 2i; % ERROR: cannot recast z to complex

As a workaround, set the complexity of the operand to match the result
of the operation:

m = complex(3); % Sets m to complex variable of value 3 + 0i
m = 5 + 6.7i; % Assigns a complex result to a complex number

6-4

Code Generation for Complex Data

Expressions With Complex Operands Yield Complex
Results
In general, expressions that contain one or more complex operands produce
a complex result in generated code, even if the value of the result is zero.
Consider the following example:

x = 2 + 3i;
y = 2 - 3i;
z = x + y; % z is 4 + 0i.

In MATLAB, this code generates the real result z = 4. During code
generation, the types for x and y are known, but their values are not. Because
either or both operands in this expression are complex, z is defined as a
complex variable requiring storage for both a real and an imaginary part. z
equals the complex result 4 + 0i in generated code, not 4 as in MATLAB code.

Exceptions to this behavior are:

• Values returned by MEX functions are real when the imaginary part of
the value is zero.

function y = foo()
y = 1 + 0i; % y is complex with imaginary part equal to zero

end

The MEX function foo_mex returns the real value 1.

z = foo_mex

• Complex arguments to extrinsic functions are real when the imaginary
part of the argument is zero.

function y = foo()
coder.extrinsic('sqrt')
x = 1 + 0i; % x is complex
y = sqrt(x); % x is real, y is real

end

• Functions that take complex arguments but produce real results return
real values.

6-5

6 Defining Data for Code Generation

y = real(x); % y is the real part of the complex number x.
y = imag(x); % y is the real-valued imaginary part of x.
y = isreal(x); % y is false (0) for a complex number x.

• Functions that take real arguments but produce complex results return
complex values.

z = complex(x,y); % z is a complex number for a real x and y.

6-6

Code Generation for Characters

Code Generation for Characters
The complete set of Unicode® characters is not supported for code generation.
Characters are restricted to 8 bits of precision in generated code. Because
many mathematical operations require more than 8 bits of precision, it is
recommended that you do not perform arithmetic with characters if you
intend to generate code from your MATLAB algorithm.

6-7

6 Defining Data for Code Generation

6-8

7

Code Generation for
Variable-Size Data

• “What Is Variable-Size Data?” on page 7-2

• “Variable-Size Data Definition for Code Generation” on page 7-3

• “Bounded Versus Unbounded Variable-Size Data” on page 7-4

• “Control Memory Allocation of Variable-Size Data” on page 7-5

• “Specify Variable-Size Data Without Dynamic Memory Allocation” on
page 7-6

• “Variable-Size Data in Code Generation Reports” on page 7-10

• “Define Variable-Size Data for Code Generation” on page 7-12

• “C Code Interface for Arrays” on page 7-19

• “Diagnose and Fix Variable-Size Data Errors” on page 7-23

• “Incompatibilities with MATLAB in Variable-Size Support for Code
Generation” on page 7-27

• “Restrictions on Variable Sizing in Toolbox Functions Supported for Code
Generation” on page 7-36

7 Code Generation for Variable-Size Data

What Is Variable-Size Data?
Variable-size data is data whose size can change at run time. By contrast,
fixed-size data is data whose size is known and locked at compile time and,
therefore, cannot change at run time.

For example, in the following MATLAB function nway, B is a variable-size
array; its length is not known at compile time.

function B = nway(A,n)
% Compute average of every N elements of A and put them in B.
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end
else

error('n <= 0 or does not divide number of elements evenly');
end

7-2

Variable-Size Data Definition for Code Generation

Variable-Size Data Definition for Code Generation
In the MATLAB language, data can vary in size. By contrast, the semantics
of generated code constrains the class, complexity, and shape of every
expression, variable, and structure field. Therefore, for code generation, you
must use each variable consistently. Each variable must:

• Be either complex or real (determined at first assignment)

• Have a consistent shape

For fixed-size data, the shape is the same as the size returned in MATLAB.
For example, if size(A) == [4 5], the shape of variable A is 4 x 5.
For variable-size data, the shape can be abstract. That is, one or more
dimensions can be unknown (such as 4x? or ?x?).

By default, the compiler detects code logic that attempts to change these fixed
attributes after initial assignments, and flags these occurrences as errors
during code generation. However, you can override this behavior by defining
variables or structure fields as variable-size data.

For more information, see “Bounded Versus Unbounded Variable-Size Data”
on page 7-4

7-3

7 Code Generation for Variable-Size Data

Bounded Versus Unbounded Variable-Size Data
You can generate code for bounded and unbounded variable-size data.
Bounded variable-size data has fixed upper bounds; this data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds; this data must be allocated on the
heap. If you use unbounded data, you must use dynamic memory allocation
so that the compiler:

• Does not check for upper bounds

• Allocates memory on the heap instead of the stack

You can control the memory allocation of variable-size data. For more
information, see “Control Memory Allocation of Variable-Size Data” on page
7-5.

7-4

Control Memory Allocation of Variable-Size Data

Control Memory Allocation of Variable-Size Data
Data whose size (in bytes) is greater than or equal to the dynamic memory
allocation threshold is allocated on the heap. The default dynamic memory
allocation threshold is 64 kilobytes. Data whose size is less than this
threshold is allocated on the stack.

Dynamic memory allocation is an expensive operation; the performance cost
might be too high for small data sets. If you use small variable-size data
sets or data that does not change size at run time, disable dynamic memory
allocation. See “Control Dynamic Memory Allocation” on page 19-96.

You can control memory allocation globally for your application by modifying
the dynamic memory allocation threshold. See “Generate Code for a MATLAB
Function That Expands a Vector in a Loop” on page 19-100. You can control
memory allocation for individual variables by specifying upper bounds. See
“Specifying Upper Bounds for Variable-Size Data” on page 7-6.

7-5

7 Code Generation for Variable-Size Data

Specify Variable-Size Data Without Dynamic Memory
Allocation

In this section...

“Fixing Upper Bounds Errors” on page 7-6

“Specifying Upper Bounds for Variable-Size Data” on page 7-6

Fixing Upper Bounds Errors
If MATLAB cannot determine or compute the upper bound, you must specify
an upper bound. See “Specifying Upper Bounds for Variable-Size Data” on
page 7-6 and “Diagnosing and Fixing Errors in Detecting Upper Bounds”
on page 7-25

Specifying Upper Bounds for Variable-Size Data

• “When to Specify Upper Bounds for Variable-Size Data” on page 7-6

• “Specifying Upper Bounds on the Command Line for Variable-Size Inputs”
on page 7-6

• “Specifying Unknown Upper Bounds for Variable-Size Inputs” on page 7-7

• “Specifying Upper Bounds for Local Variable-Size Data” on page 7-7

• “Using a Matrix Constructor with Nonconstant Dimensions” on page 7-8

When to Specify Upper Bounds for Variable-Size Data
When using static allocation on the stack during code generation, MATLAB
must be able to determine upper bounds for variable-size data. Specify the
upper bounds explicitly for variable-size data from external sources, such
as inputs and outputs.

Specifying Upper Bounds on the Command Line for
Variable-Size Inputs
Use the coder.typeof construct with the -args option on the codegen
command line (requires a MATLAB Coder license). For example:

7-6

Specify Variable-Size Data Without Dynamic Memory Allocation

codegen foo -args {coder.typeof(double(0),[3 100],1)}

This command specifies that the input to function foo is a matrix of real
doubles with two variable dimensions. The upper bound for the first
dimension is 3; the upper bound for the second dimension is 100. For a
detailed explanation of this syntax, see coder.typeof.

Specifying Unknown Upper Bounds for Variable-Size Inputs
If you use dynamic memory allocation, you can specify that you don’t know
the upper bounds of inputs. To specify an unknown upper bound, use the
infinity constant Inf in place of a numeric value. For example:

codegen foo -args {coder.typeof(double(0), [1 Inf])}

In this example, the input to function foo is a vector of real doubles without
an upper bound.

Specifying Upper Bounds for Local Variable-Size Data
When using static allocation, MATLAB uses a sophisticated analysis to
calculate the upper bounds of local data at compile time. However, when the
analysis fails to detect an upper bound or calculates an upper bound that is
not precise enough for your application, you need to specify upper bounds
explicitly for local variables.

You do not need to specify upper bounds when using dynamic allocation on
the heap. In this case, MATLAB assumes variable-size data is unbounded
and does not attempt to determine upper bounds.

Constraining the Value of a Variable That Specifies Dimensions of
Variable-Size Data. Use the assert function with relational operators to
constrain the value of variables that specify the dimensions of variable-size
data. For example:

function y = dim_need_bound(n) %#codegen
assert (n <= 5);
L= ones(n,n);
M = zeros(n,n);
M = [L; M];
y = M;

7-7

7 Code Generation for Variable-Size Data

This assert statement constrains input n to a maximum size of 5, defining L
and M as variable-sized matrices with upper bounds of 5 for each dimension.

Specifying the Upper Bounds for All Instances of a Local Variable.
Use the coder.varsize function to specify the upper bounds for all instances
of a local variable in a function. For example:

function Y = example_bounds1(u) %#codegen
Y = [1 2 3 4 5];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

The second argument of coder.varsize specifies the upper bound for each
instance of the variable specified in the first argument. In this example, the
argument [1 10] indicates that for every instance of Y:

• First dimension is fixed at size 1

• Second dimension can grow to an upper bound of 10

By default, coder.varsize assumes dimensions of 1 are fixed size. For more
information, see the coder.varsize reference page.

Using a Matrix Constructor with Nonconstant Dimensions
You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

If you are not using dynamic memory allocation, you must also add an assert
statement to provide upper bounds for the dimensions. For example:

7-8

Specify Variable-Size Data Without Dynamic Memory Allocation

function y = var_by_assign(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

7-9

7 Code Generation for Variable-Size Data

Variable-Size Data in Code Generation Reports

In this section...

“What Reports Tell You About Size” on page 7-10

“How Size Appears in Code Generation Reports” on page 7-11

“How to Generate a Code Generation Report” on page 7-11

What Reports Tell You About Size
Code generation reports:

• Differentiate fixed-size from variable-size data

• Identify variable-size data with unknown upper bounds

• Identify variable-size data with fixed dimensions

If you define a variable-size array and then subsequently fix the dimensions
of this array in the code, the report appends * to the size of the variable. In
the generated C code, this variable appears as a variable-size array, but
the size of its dimensions does not change during execution.

• Provide guidance on how to fix size mismatch and upper bounds errors.

7-10

Variable-Size Data in Code Generation Reports

How Size Appears in Code Generation Reports

�������	�
�������	����
������������������

�������������������
�����	�������	���

���������	�
�������	����
����������������

 �����	�!"�!�#������������#��	�
�������	����
�!�	�	�$���!�#��������!	������	���	

How to Generate a Code Generation Report
Add the -report option to your codegen command.

7-11

7 Code Generation for Variable-Size Data

Define Variable-Size Data for Code Generation

In this section...

“When to Define Variable-Size Data Explicitly” on page 7-12

“Using a Matrix Constructor with Nonconstant Dimensions” on page 7-13

“Inferring Variable Size from Multiple Assignments” on page 7-13

“Defining Variable-Size Data Explicitly Using coder.varsize” on page 7-15

When to Define Variable-Size Data Explicitly
For code generation, you must assign variables to have a specific class,
size, and complexity before using them in operations or returning them as
outputs. Generally, you cannot reassign variable properties after the initial
assignment. Therefore, attempts to grow a variable or structure field after
assigning it a fixed size might cause a compilation error. In these cases, you
must explicitly define the data as variable sized using one of these methods:

Method See

Assign the data from a variable-size
matrix constructor such as
• ones

• zeros

• repmat

“Using a Matrix Constructor with
Nonconstant Dimensions” on page
7-13

Assign multiple, constant sizes
to the same variable before using
(reading) the variable.

“Inferring Variable Size from
Multiple Assignments” on page 7-13

Define all instances of a variable to
be variable sized

“Defining Variable-Size Data
Explicitly Using coder.varsize” on
page 7-15

7-12

Define Variable-Size Data for Code Generation

Using a Matrix Constructor with Nonconstant
Dimensions
You can define a variable-size matrix by using a constructor with nonconstant
dimensions. For example:

function y = var_by_assign(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

If you are not using dynamic memory allocation, you must also add an assert
statement to provide upper bounds for the dimensions. For example:

function y = var_by_assign(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

Inferring Variable Size from Multiple Assignments
You can define variable-size data by assigning multiple, constant sizes to the
same variable before you use (read) the variable in your code. When MATLAB
uses static allocation on the stack for code generation, it infers the upper
bounds from the largest size specified for each dimension. When you assign
the same size to a given dimension across all assignments, MATLAB assumes
that the dimension is fixed at that size. The assignments can specify different
shapes as well as sizes.

When dynamic memory allocation is used, MATLAB does not check for upper
bounds; it assumes variable-size data is unbounded.

Inferring Upper Bounds from Multiple Definitions with Different
Shapes

function y = var_by_multiassign(u) %#codegen

7-13

7 Code Generation for Variable-Size Data

if (u > 0)
y = ones(3,4,5);

else
y = zeros(3,1);

end

When static allocation is used, this function infers that y is a matrix with
three dimensions, where:

• First dimension is fixed at size 3

• Second dimension is variable with an upper bound of 4

• Third dimension is variable with an upper bound of 5

The code generation report represents the size of matrix y like this:

When dynamic allocation is used, the function analyzes the dimensions of
y differently:

• First dimension is fixed at size 3

• Second and third dimensions are unbounded

In this case, the code generation report represents the size of matrix y like
this:

7-14

Define Variable-Size Data for Code Generation

Defining Variable-Size Data Explicitly Using
coder.varsize
Use the function coder.varsize to define one or more variables or structure
fields as variable-size data. Optionally, you can also specify which dimensions
vary along with their upper bounds (see “Specifying Which Dimensions Vary”
on page 7-15). For example:

• Define B as a variable-size 2-by-2 matrix, where each dimension has an
upper bound of 64:

coder.varsize('B', [64 64]);

• Define B as a variable-size matrix:

coder.varsize('B');

When you supply only the first argument, coder.varsize assumes all
dimensions of B can vary and that the upper bound is size(B).

For more information, see the coder.varsize reference page.

Specifying Which Dimensions Vary
You can use the function coder.varsize to specify which dimensions vary.
For example, the following statement defines B as a row vector whose first
dimension is fixed at 2, but whose second dimension can grow to an upper
bound of 16:

coder.varsize('B', [2, 16], [0 1])

The third argument specifies which dimensions vary. This argument must be
a logical vector or a double vector containing only zeros and ones. Dimensions
that correspond to zeros or false have fixed size; dimensions that correspond
to ones or true vary in size. coder.varsize usually treats dimensions of size
1 as fixed (see “Defining Variable-Size Matrices with Singleton Dimensions”
on page 7-16).

For more information about the syntax, see the coder.varsize reference
page.

7-15

7 Code Generation for Variable-Size Data

Allowing a Variable to Grow After Defining Fixed Dimensions
Function var_by_if defines matrix Y with fixed 2-by-2 dimensions before first
use (where the statement Y = Y + u reads from Y). However, coder.varsize
defines Y as a variable-size matrix, allowing it to change size based on decision
logic in the else clause:

function Y = var_by_if(u) %#codegen
if (u > 0)

Y = zeros(2,2);
coder.varsize('Y');
if (u < 10)

Y = Y + u;
end

else
Y = zeros(5,5);

end

Without coder.varsize, MATLAB infers Y to be a fixed-size, 2-by-2 matrix
and generates a size mismatch error during code generation.

Defining Variable-Size Matrices with Singleton Dimensions
A singleton dimension is a dimension for which size(A,dim) = 1. Singleton
dimensions are fixed in size when:

• You specify a dimension with an upper bound of 1 in coder.varsize
expressions.

For example, in this function, Y behaves like a vector with one variable-size
dimension:

function Y = dim_singleton(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10]);
if (u > 0)

Y = [Y 3];
else

Y = [Y u];
end

7-16

Define Variable-Size Data for Code Generation

• You initialize variable-size data with singleton dimensions using matrix
constructor expressions or matrix functions.

For example, in this function, both X and Y behave like vectors where only
their second dimensions are variable sized:

function [X,Y] = dim_singleton_vects(u) %#codegen
Y = ones(1,3);
X = [1 4];
coder.varsize('Y','X');
if (u > 0)

Y = [Y u];
else

X = [X u];
end

You can override this behavior by using coder.varsize to specify explicitly
that singleton dimensions vary. For example:

function Y = dim_singleton_vary(u) %#codegen
Y = [1 2];
coder.varsize('Y', [1 10], [1 1]);
if (u > 0)

Y = [Y Y+u];
else

Y = [Y Y*u];
end

In this example, the third argument of coder.varsize is a vector of ones,
indicating that each dimension of Y varies in size. For more information, see
the coder.varsize reference page.

Defining Variable-Size Structure Fields
To define structure fields as variable-size arrays, use colon (:) as the index
expression. The colon (:) indicates that all elements of the array are variable
sized. For example:

function y=struct_example() %#codegen

d = struct('values', zeros(1,0), 'color', 0);

7-17

7 Code Generation for Variable-Size Data

data = repmat(d, [3 3]);
coder.varsize('data(:).values');

for i = 1:numel(data)
data(i).color = rand-0.5;
data(i).values = 1:i;

end

y = 0;
for i = 1:numel(data)

if data(i).color > 0
y = y + sum(data(i).values);

end;
end

The expression coder.varsize('data(:).values') defines the field values
inside each element of matrix data to be variable sized.

Here are other examples:

• coder.varsize('data.A(:).B')

In this example, data is a scalar variable that contains matrix A. Each
element of matrix A contains a variable-size field B.

• coder.varsize('data(:).A(:).B')

This expression defines field B inside each element of matrix A inside each
element of matrix data to be variable sized.

7-18

C Code Interface for Arrays

C Code Interface for Arrays

In this section...

“C Code Interface for Statically Allocated Arrays” on page 7-19

“C Code Interface for Dynamically Allocated Arrays” on page 7-20

“Utility Functions for Creating emxArray Data Structures” on page 7-21

C Code Interface for Statically Allocated Arrays
In generated code, MATLAB contains two pieces of information about
statically allocated arrays: the maximum size of the array and its actual size.

For example, consider the MATLAB function uniquetol:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
coder.varsize('B');
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Generate code for uniquetol specifying that input A is a variable-size real
double vector whose first dimension is fixed at 1 and second dimension can
vary up to 100 elements.

codegen -config:lib -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the generated code, the function declaration is:

extern void uniquetol(const double A_data[100], const int A_size[2],...
double tol, emxArray_real_T *B);

7-19

7 Code Generation for Variable-Size Data

There are two pieces of information about A:

• double A_data[100]: the maximum size of input A (where 100 is the
maximum size specified using coder.typeof).

• int A_size[2]: the actual size of the input.

C Code Interface for Dynamically Allocated Arrays
In generated code, MATLAB represents dynamically allocated data as a
structure type called emxArray. An embeddable version of the MATLAB
mxArray, the emxArray is a family of data types, specialized for all base types.

emxArray Structure Definition

typedef struct emxArray_<baseTypedef>
{

<baseType> *data;
int *size;
int allocatedSize;
int numDimensions;
boolean_T canFreeData;

} emxArray_<baseTypedef>;

where baseTypedef is the predefined type in rtwtypes.h corresponding to
baseType. For example, here’s the definition for an emxArray of base type
double with unknown upper bounds:

typedef struct emxArray_real_T
{

double *data;
int *size;
int allocatedSize;
int numDimensions;
boolean_T canFreeData;

} emxArray_real_T;

Note that the predefined type corresponding to double is real_T. For more
information on the correspondence between built-in data types and predefined
types in rtwtypes.h, see “How MATLAB® Coder™ Infers C/C++ Data Types”
on page 23-10.

7-20

C Code Interface for Arrays

To define two variables, in1 and in2, of this type, use this statement:

emxArray_real_T *in1, *in2;

C Code Interface for Structure Fields

Field Description

*data Pointer to data of type <baseType>

*size Pointer to first element of size vector. Length
of the vector equals the number of dimensions.

allocatedSize Number of elements currently allocated for the
array. If the size changes, MATLAB reallocates
memory based on the new size.

numDimensions Number of dimensions of the size vector, that
is, the number of dimensions you can access
without crossing into unallocated or unused
memory

canFreeData Boolean flag indicating how to deallocate
memory:
• true – MATLAB deallocates memory
automatically

• false – Calling program determines when
to deallocate memory

Utility Functions for Creating emxArray Data
Structures
When you generate code that uses variable-size data, the code generation
software exports a set of utility functions that you can use to create and
interact with emxArrays in your generated code. To call these functions in
your main C function, include the generated header file. For example, when
you generate code for function foo, include foo_emxAPI.h in your main C
function. For more information, see the “Write a C Main Function” section
in “Using Dynamic Memory Allocation for an "Atoms" Simulation” on page
19-107.

7-21

7 Code Generation for Variable-Size Data

Function Arguments Description

emxArray_<baseType>
*emxCreateWrapper_<baseType> (...)

*data
num_rows
num_cols

Creates a new
2-dimensional
emxArray, but does not
allocate it on the heap.
Instead uses memory
provided by the user
and sets canFreeData
to false so it does not
inadvertently free user
memory, such as the
stack.

emxArray_<baseType>
*emxCreateWrapperND_<baseType>
(...)

*data
numDimensions
*size

Same as
emxCreateWrapper,
except it creates a
new N-dimensional
emxArray.

emxArray_<baseType>
*emxCreate_<baseType> (...)

num_rows
num_cols

Creates a new
two-dimensional
emxArray on the heap,
initialized to zero. All
data elements have the
data type specified by
baseTypeName.

emxArray_<baseType>
*emxCreateND_<baseType> (...)

numDimensions
*size

Same as emxCreate,
except it creates a
new N-dimensional
emxArray on the heap.

emxArray_<baseType>
*emxDestroyArray_<baseType> (...)

*emxArray Frees dynamic
memory allocated
by *emxCreate
and *emxCreateND
functions.

7-22

Diagnose and Fix Variable-Size Data Errors

Diagnose and Fix Variable-Size Data Errors

In this section...

“Diagnosing and Fixing Size Mismatch Errors” on page 7-23

“Diagnosing and Fixing Errors in Detecting Upper Bounds” on page 7-25

Diagnosing and Fixing Size Mismatch Errors
Check your code for these issues:

Assigning Variable-Size Matrices to Fixed-Size Matrices

You cannot assign variable-size matrices to fixed-size matrices in generated
code. Consider this example:

function Y = example_mismatch1(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

Compiling this function produces this error:

??? Dimension 1 is fixed on the left-hand side
but varies on the right ...

There are several ways to fix this error:

• Allow matrix A to grow by adding the coder.varsize construct:

function Y = example_mismatch1_fix1(n) %#codegen
coder.varsize('A');
assert(n<10);
B = ones(n,n);
A = magic(3);

7-23

7 Code Generation for Variable-Size Data

A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Explicitly restrict the size of matrix B to 3-by-3 by modifying the assert
statement:

function Y = example_mismatch1_fix2(n) %#codegen
coder.varsize('A');
assert(n==3)
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B;
end
Y = A;

• Use explicit indexing to make B the same size as A:

function Y = example_mismatch1_fix3(n) %#codegen
assert(n<10);
B = ones(n,n);
A = magic(3);
A(1) = mean(A(:));
if (n == 3)

A = B(1:3, 1:3);
end
Y = A;

Empty Matrix Reshaped to Match Variable-Size Specification

If you assign an empty matrix [] to variable-size data, MATLAB might
silently reshape the data in generated code to match a coder.varsize
specification. For example:

function Y = test(u) %#codegen
Y = [];
coder.varsize(`Y', [1 10]);

7-24

Diagnose and Fix Variable-Size Data Errors

If u < 0
Y = [Y u];

end

In this example, coder.varsize defines Y as a column vector of up to 10
elements, so its first dimension is fixed at size 1. The statement Y = []
designates the first dimension of Y as 0, creating a mismatch. The right
hand side of the assignment is an empty matrix and the left hand side is a
variable-size vector. In this case, MATLAB reshapes the empty matrix Y =
[] in generated code to Y = zeros(1,0) so it matches the coder.varsize
specification.

Performing Binary Operations on Fixed and Variable-Size Operands

You cannot perform binary operations on operands of different sizes.
Operands have different sizes if one has fixed dimensions and the other has
variable dimensions. For example:

function z = mismatch_operands(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x + y;

When you compile this function, you get an error because y has fixed
dimensions (3 x 3), but x has variable dimensions. Fix this problem by using
explicit indexing to make x the same size as y:

function z = mismatch_operands_fix(n) %#codegen
assert(n>=3 && n<10);
x = ones(n,n);
y = magic(3);
z = x(1:3,1:3) + y;

Diagnosing and Fixing Errors in Detecting Upper
Bounds
Check your code for these issues:

7-25

7 Code Generation for Variable-Size Data

Using Nonconstant Dimensions in a Matrix Constructor

You can define variable-size data by assigning a variable to a matrix with
nonconstant dimensions. For example:

function y = dims_vary(u) %#codegen
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

However, compiling this function generates an error because you did not
specify an upper bound for u.

There are several ways to fix the problem:

• Enable dynamic memory allocation and recompile. During code generation,
MATLAB does not check for upper bounds when it uses dynamic memory
allocation for variable-size data.

• If you do not want to use dynamic memory allocation, add an assert
statement before the first use of u:

function y = dims_vary_fix(u) %#codegen
assert (u < 20);
if (u > 0)

y = ones(3,u);
else

y = zeros(3,1);
end

7-26

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Incompatibilities with MATLAB in Variable-Size Support
for Code Generation

In this section...

“Incompatibility with MATLAB for Scalar Expansion” on page 7-27

“Incompatibility with MATLAB in Determining Size of Variable-Size N-D
Arrays” on page 7-29

“Incompatibility with MATLAB in Determining Size of Empty Arrays” on
page 7-30

“Incompatibility with MATLAB in Determining Class of Empty Arrays”
on page 7-31

“Incompatibility with MATLAB in Vector-Vector Indexing” on page 7-32

“Incompatibility with MATLAB in Matrix Indexing Operations for Code
Generation” on page 7-33

“Incompatibility with MATLAB in Concatenating Variable-Size Matrices”
on page 7-34

“Dynamic Memory Allocation Not Supported for MATLAB Function Blocks”
on page 7-35

Incompatibility with MATLAB for Scalar Expansion
Scalar expansion is a method of converting scalar data to match the
dimensions of vector or matrix data. Except for some matrix operators,
MATLAB arithmetic operators work on corresponding elements of arrays with
equal dimensions. For vectors and rectangular arrays, both operands must be
the same size unless one is a scalar. If one operand is a scalar and the other is
not, MATLAB applies the scalar to every element of the other operand—this
property is known as scalar expansion.

During code generation, the standard MATLAB scalar expansion rules apply
except when operating on two variable-size expressions. In this case, both
operands must be the same size. The generated code does not perform scalar
expansion even if one of the variable-size expressions turns out to be scalar at
run time. Instead, it generates a size mismatch error at run time for MEX

7-27

7 Code Generation for Variable-Size Data

functions. Run-time error checking does not occur for non-MEX builds; the
generated code will have unspecified behavior.

For example, in the following function, z is scalar for the switch statement
case 0 and case 1. MATLAB applies scalar expansion when evaluating
y(:) = z; for these two cases.

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u

case 0
z = 0;

case 1
z = 1;

otherwise
z = zeros(3);

end
y(:) = z;

When you generate code for this function, the code generation software
determines that z is variable size with an upper bound of 3.

7-28

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

If you run the MEX function with u equal to zero or one, even though z is
scalar at run time, the generated code does not perform scalar expansion
and a run-time error occurs.

scalar_exp_test_err1_mex(0)
Sizes mismatch: 9 ~= 1.

Error in scalar_exp_test_err1 (line 11)
y(:) = z;

Workaround
Use indexing to force z to be a scalar value:

function y = scalar_exp_test_err1(u) %#codegen
y = ones(3);
switch u

case 0
z = 0;

case 1
z = 1;

otherwise
z = zeros(3);

end
y(:) = z(1);

Incompatibility with MATLAB in Determining Size of
Variable-Size N-D Arrays
For variable-size N-D arrays, the size function can return a different result
in generated code than in MATLAB. In generated code, size(A) returns a
fixed-length output because it does not drop trailing singleton dimensions
of variable-size N-D arrays. By contrast, size(A) in MATLAB returns a
variable-length output because it drops trailing singleton dimensions.

For example, if the shape of array A is :?x:?x:? and size(A,3)==1, size(A)
returns:

• Three-element vector in generated code

7-29

7 Code Generation for Variable-Size Data

• Two-element vector in MATLAB code

Workarounds
If your application requires generated code to return the same size of
variable-size N-D arrays as MATLAB code, consider one of these workarounds:

• Use the two-argument form of size.

For example, size(A,n) returns the same answer in generated code and
MATLAB code.

• Rewrite size(A):

B = size(A);
X = B(1:ndims(A));

This version returns X with a variable-length output. However, you cannot
pass a variable-size X to matrix constructors such as zeros that require a
fixed-size argument.

Incompatibility with MATLAB in Determining Size of
Empty Arrays
The size of an empty array in generated code might be different from its size
in MATLAB source code. The size might be 1x0 or 0x1 in generated code,
but 0x0 in MATLAB. Therefore, you should not write code that relies on the
specific size of empty matrices.

For example, consider the following code:

function y = foo(n) %#codegen
x = [];
i=0;

while (i<10)
x = [5, x];
i=i+1;

end
if n > 0

x = [];
end
y=size(x);

7-30

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

end

Concatenation requires its operands to match on the size of the dimension
that is not being concatenated. In the preceding concatenation the scalar
value has size 1x1 and x has size 0x0. To support this use case, the code
generation software determines the size for x as [1 x :?]. Because there
is another assignment x = [] after the concatenation, the size of x in the
generated code is 1x0 instead of 0x0.

Workaround
If your application checks whether a matrix is empty, use one of these
workarounds:

• Rewrite your code to use the isempty function instead of the size function.

• Instead of using x=[] to create empty arrays, create empty arrays of a
specific size using zeros. For example:

function y = test_empty(n) %#codegen
x = zeros(1,0);
i=0;

while (i<10)
x = [5, x];
i=i+1;

end
if n > 0

x = zeros(1,0);
end
y=size(x);
end

Incompatibility with MATLAB in Determining Class of
Empty Arrays
The class of an empty array in generated code can be different from its class
in MATLAB source code. Therefore, do not write code that relies on the class
of empty matrices.

For example, consider the following code:

7-31

7 Code Generation for Variable-Size Data

function y = fun(n)
x = [];
if n > 1

x = ['a', x];
end
y=class(x);

end

fun(0) returns double in MATLAB, but char in the generated code. When
the statement n > 1 is false, MATLAB does not execute x = ['a', x].
The class of x is double, the class of the empty array. However, the code
generation software considers all execution paths. It determines that based
on the statement x = ['a', x], the class of x is char.

Workaround
Instead of using x=[] to create an empty array, create an empty array of
a specific class. For example, use blanks(0) to create an empty array of
characters.

function y = fun(n)
x = blanks(0);
if n > 1

x = ['a', x];
end
y=class(x);

end

Incompatibility with MATLAB in Vector-Vector
Indexing
In vector-vector indexing, you use one vector as an index into another vector.
When either vector is variable sized, you might get a run-time error during
code generation. Consider the index expression A(B). The general rule for
indexing is that size(A(B)) == size(B). However, when both A and B are
vectors, MATLAB applies a special rule: use the orientation of A as the
orientation of the output. For example, if size(A) == [1 5] and size(B) ==
[3 1], then size(A(B)) == [1 3].

In this situation, if the code generation software detects that both A and B are
vectors at compile time, it applies the special rule and gives the same result

7-32

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

as MATLAB. However, if either A or B is a variable-size matrix (has shape
?x?) at compile time, the code generation software applies only the general
indexing rule. Then, if both A and B become vectors at run time, the code
generation software reports a run-time error when you run the MEX function.
Run-time error checking does not occur for non-MEX builds; the generated
code will have unspecified behavior. It is best practice to generate and test a
MEX function before generating C code.

Workaround
Force your data to be a vector by using the colon operator for indexing:
A(B(:)). For example, suppose your code intentionally toggles between
vectors and regular matrices at run time. You can do an explicit check for
vector-vector indexing:

...
if isvector(A) && isvector(B)

C = A(:);
D = C(B(:));

else
D = A(B);

end
...

The indexing in the first branch specifies that C and B(:) are compile-time
vectors. As a result, the code generation software applies the standard
vector-vector indexing rule.

Incompatibility with MATLAB in Matrix Indexing
Operations for Code Generation
The following limitation applies to matrix indexing operations for code
generation:

• Initialization of the following style:

for i = 1:10
M(i) = 5;

end

7-33

7 Code Generation for Variable-Size Data

In this case, the size of M changes as the loop is executed. Code generation
does not support increasing the size of an array over time.

For code generation, preallocate M as highlighted in the following code.

M=zeros(1,10);
for i = 1:10

M(i) = 5;
end

The following limitation applies to matrix indexing operations for code
generation when dynamic memory allocation is disabled:

• M(i:j) where i and j change in a loop

During code generation, memory is not dynamically allocated for the size of
the expressions that change as the program executes. To implement this
behavior, use for-loops as shown in the following example:

...
M = ones(10,10);
for i=1:10
for j = i:10
M(i,j) = 2 * M(i,j);

end
end
...

Note The matrix M must be defined before entering the loop, as shown in
the highlighted code.

Incompatibility with MATLAB in Concatenating
Variable-Size Matrices
For code generation, when you concatenate variable-sized arrays, the
dimensions that are not being concatenated must match exactly.

7-34

Incompatibilities with MATLAB® in Variable-Size Support for Code Generation

Dynamic Memory Allocation Not Supported for
MATLAB Function Blocks
You cannot use dynamic memory allocation for variable-size data in MATLAB
Function blocks. Use bounded instead of unbounded variable-size data.

7-35

7 Code Generation for Variable-Size Data

Restrictions on Variable Sizing in Toolbox Functions
Supported for Code Generation

In this section...

“Common Restrictions” on page 7-36

“Toolbox Functions with Variable Sizing Restrictions” on page 7-37

Common Restrictions
The following common restrictions apply to multiple toolbox functions, but
only for code generation. To determine which of these restrictions apply to
specific library functions, see the table in “Toolbox Functions with Variable
Sizing Restrictions” on page 7-37.

Variable-length vector restriction
Inputs to the library function must be variable-length vectors or fixed-size
vectors. A variable-length vector is a variable-size array that has the shape
1x:n or :nx1 (one dimension is variable sized and the other is fixed at size 1).
Other shapes are not permitted, even if they are vectors at run time.

Automatic dimension restriction
When the function selects the working dimension automatically, it bases the
selection on the upper bounds for the dimension sizes. In the case of the sum
function, sum(X) selects its working dimension automatically, while sum(X,
dim) uses dim as the explicit working dimension.

For example, if X is a variable-size matrix with dimensions 1x:3x:5, sum(x)
behaves like sum(X,2) in generated code. In MATLAB, it behaves like
sum(X,2) provided size(X,2) is not 1. In MATLAB, when size(X,2) is 1,
sum(X) behaves like sum(X,3). Consequently, you get a run-time error if an
automatically selected working dimension assumes a length of 1 at run time.

To avoid the issue, specify the intended working dimension explicitly as
a constant value.

7-36

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Array-to-vector restriction
The function issues an error when a variable-size array that is not a
variable-length vector assumes the shape of a vector at run time. To avoid
the issue, specify the input explicitly as a variable-length vector instead of
a variable-size array.

Array-to-scalar restriction
The function issues an error if a variable-size array assumes a scalar value at
run time. To avoid this issue, specify scalars as fixed size.

Toolbox Functions with Variable Sizing Restrictions
The following restrictions apply to specific toolbox functions, but only for
code generation.

Function Restrictions with Variable-Size Data

all
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

any
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass the first argument a
variable-size matrix that is 0-by-0 at run time.

bsxfun
• Dimensions expand only where one input array
or the other has a fixed length of 1.

cat
• Dimension argument must be a constant.

• An error occurs if variable-size inputs are
empty at run time.

7-37

7 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

conv
• See “Variable-length vector restriction” on page
7-36.

• Input vectors must have the same orientation,
either both row vectors or both column vectors.

cov
• For cov(X), see“Array-to-vector restriction” on
page 7-37.

cross
• Variable-size array inputs that become vectors
at run time must have the same orientation.

deconv
• For both arguments, see“Variable-length vector
restriction” on page 7-36.

detrend
• For first argument for row vectors only, see
“Array-to-vector restriction” on page 7-37 .

diag
• See “Array-to-vector restriction” on page 7-37 .

diff
• See “Automatic dimension restriction” on page
7-36.

• Length of the working dimension must be
greater than the difference order input when
the input is variable sized. For example, if the
input is a variable-size matrix that is 3-by-5 at
run time, diff(x,2,1) works but diff(x,5,1)
generates a run-time error.

fft
• See “Automatic dimension restriction” on page
7-36.

7-38

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

filter
• For first and second arguments, see
“Variable-length vector restriction” on page
7-36.

• See “Automatic dimension restriction” on page
7-36.

hist
• For second argument, see “Variable-length
vector restriction” on page 7-36.

• For second input argument, see“Array-to-scalar
restriction” on page 7-37.

histc
• See “Automatic dimension restriction” on page
7-36.

ifft
• See “Automatic dimension restriction” on page
7-36.

ind2sub
• First input (the size vector input) must be fixed
size.

interp1
• For the Y input and xi input, see“Array-to-vector
restriction” on page 7-37.

• Y input can become a column vector dynamically.

• A run-time error occurs if Y input is not a
variable-length vector and becomes a row vector
at run time.

ipermute
• Order input must be fixed size.

issorted
• For optional rows input, see “Variable-length
vector restriction” on page 7-36.

7-39

7 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

magic
• Argument must be a constant.

• Output can be fixed-size matrices only.

max
• See “Automatic dimension restriction” on page
7-36.

mean
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

median
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

min
• See “Automatic dimension restriction” on page
7-36.

mode
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

7-40

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

mtimes
• When an input is variable-size, MATLAB
determines whether to generate code for a
general matrix*matrix multiplication or a
scalar*matrix multiplication, based on whether
one of the arguments is a fixed-size scalar. If
neither argument is a fixed-size scalar, the
inner dimensions of the two arguments must
agree even if a variable-size matrix input is a
scalar at run time.

nchoosek
• The second input, k, must be a fixed-size scalar.

• The second input, k, must be a constant
for static allocation. If you enable dynamic
allocation, the second input can be a variable.

• You cannot create a variable-size array by
passing in a variable, k, unless you enable
dynamic allocation.

permute
• Order input must be fixed-size.

planerot
• Input must be a fixed-size, two-element column
vector. It cannot be a variable-size array that
takes on the size 2-by-1 at run time.

poly
• See “Variable-length vector restriction” on page
7-36.

polyfit
• For first and second arguments, see
“Variable-length vector restriction” on page
7-36.

7-41

7 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

prod
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

rand
• For an upper-bounded variable N, rand(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, rand([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

randn
• For an upper-bounded variable N, randn(1,N)
produces a variable-length vector of 1x:M where
M is the upper bound on N.

• For an upper-bounded variable N, randn([1,N])
may produce a variable-length vector of :1x:M
where M is the upper bound on N.

reshape
• When the input is a variable-size empty array,
the maximum dimension size of the output
array (also empty) cannot be larger than that
of the input.

roots
• See “Variable-length vector restriction” on page
7-36.

7-42

Restrictions on Variable Sizing in Toolbox Functions Supported for Code Generation

Function Restrictions with Variable-Size Data

shiftdim
• If you do not supply the second argument, the
number of shifts is determined at compilation
time by the upper bounds of the dimension
sizes. Consequently, at run time the number of
shifts is constant.

• An error occurs if the dimension that is shifted
to the first dimension has length 1 at run
time. To avoid the error, supply the number of
shifts as the second input argument (must be a
constant).

• First input argument must have the same
number of dimensions when you supply a
positive number of shifts.

std
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

sub2ind
• First input (the size vector input) must be fixed
size.

sum
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

trapz
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass as the first argument
a variable-size matrix that is 0-by-0 at run time.

7-43

7 Code Generation for Variable-Size Data

Function Restrictions with Variable-Size Data

typecast
• See “Variable-length vector restriction” on page
7-36 on first argument.

var
• See “Automatic dimension restriction” on page
7-36.

• An error occurs if you pass a variable-size
matrix with 0-by-0 dimensions at run time.

7-44

8

Code Generation for
MATLAB Structures

• “Structure Definition for Code Generation” on page 8-2

• “Structure Operations Allowed for Code Generation” on page 8-3

• “Define Scalar Structures for Code Generation” on page 8-4

• “Define Arrays of Structures for Code Generation” on page 8-7

• “Make Structures Persistent” on page 8-9

• “Index Substructures and Fields” on page 8-10

• “Assign Values to Structures and Fields” on page 8-12

• “Pass Large Structures as Input Parameters” on page 8-14

8 Code Generation for MATLAB® Structures

Structure Definition for Code Generation
To generate efficient standalone code for structures, you must define and use
structures differently than you normally would when running your code in
the MATLAB environment:

What’s Different More Information

Use a restricted set of operations. “Structure Operations Allowed for
Code Generation” on page 8-3

Observe restrictions on properties
and values of scalar structures.

“Define Scalar Structures for Code
Generation” on page 8-4

Make structures uniform in arrays. “Define Arrays of Structures for
Code Generation” on page 8-7

Reference structure fields
individually during indexing.

“Index Substructures and Fields” on
page 8-10

Avoid type mismatch when assigning
values to structures and fields.

“Assign Values to Structures and
Fields” on page 8-12

8-2

Structure Operations Allowed for Code Generation

Structure Operations Allowed for Code Generation
To generate efficient standalone code for MATLAB structures, you are
restricted to the following operations:

• Define structures as local and persistent variables by assignment and
using the struct function

• Index structure fields using dot notation

• Define primary function inputs as structures

• Pass structures to local functions

8-3

8 Code Generation for MATLAB® Structures

Define Scalar Structures for Code Generation

In this section...

“Restriction When Using struct” on page 8-4

“Restrictions When Defining Scalar Structures by Assignment” on page 8-4

“Adding Fields in Consistent Order on Each Control Flow Path” on page 8-4

“Restriction on Adding New Fields After First Use” on page 8-5

Restriction When Using struct
When you use the struct function to create scalar structures for code
generation, you cannot create structures of cell arrays.

Restrictions When Defining Scalar Structures by
Assignment
When you define a scalar structure by assigning a variable to a preexisting
structure, you do not need to define the variable before the assignment.
However, if you already defined that variable, it must have the same class,
size, and complexity as the structure you assign to it. In the following
example, p is defined as a structure that has the same properties as the
predefined structure S:

...
S = struct('a', 0, 'b', 1, 'c', 2);
p = S;
...

Adding Fields in Consistent Order on Each Control
Flow Path
When you create a structure, you must add fields in the same order on each
control flow path. For example, the following code generates a compiler
error because it adds the fields of structure x in a different order in each
if statement clause:

function y = fcn(u) %#codegen
if u > 0

8-4

Define Scalar Structures for Code Generation

x.a = 10;
x.b = 20;

else
x.b = 30; % Generates an error (on variable x)
x.a = 40;

end
y = x.a + x.b;

In this example, the assignment to x.a comes before x.b in the first if
statement clause, but the assignments appear in reverse order in the else
clause. Here is the corrected code:

function y = fcn(u) %#codegen
if u > 0

x.a = 10;
x.b = 20;

else
x.a = 40;
x.b = 30;

end
y = x.a + x.b;

Restriction on Adding New Fields After First Use
You cannot add fields to a structure after you perform the following operations
on the structure:

• Reading from the structure

• Indexing into the structure array

• Passing the structure to a function

For example, consider this code:

...
x.c = 10; % Defines structure and creates field c
y = x; % Reads from structure
x.d = 20; % Generates an error
...

8-5

8 Code Generation for MATLAB® Structures

In this example, the attempt to add a new field d after reading from structure
x generates an error.

This restriction extends across the structure hierarchy. For example, you
cannot add a field to a structure after operating on one of its fields or nested
structures, as in this example:

function y = fcn(u) %#codegen

x.c = 10;
y = x.c;
x.d = 20; % Generates an error

In this example, the attempt to add a new field d to structure x after reading
from the structure’s field c generates an error.

8-6

Define Arrays of Structures for Code Generation

Define Arrays of Structures for Code Generation

In this section...

“Ensuring Consistency of Fields” on page 8-7

“Using repmat to Define an Array of Structures with Consistent Field
Properties” on page 8-7

“Defining an Array of Structures Using Concatenation” on page 8-8

Ensuring Consistency of Fields
When you create an array of MATLAB structures with the intent of
generating code, you must be sure that each structure field in the array has
the same size, type, and complexity.

Once you have created the array of structures, you can make the structure
fields variable-size using coder.varsize. For more information, see “Declare
a variable-size structure field.”.

Using repmat to Define an Array of Structures with
Consistent Field Properties
You can create an array of structures from a scalar structure by using the
MATLAB repmat function, which replicates and tiles an existing scalar
structure:

1 Create a scalar structure, as described in “Define Scalar Structures for
Code Generation” on page 8-4.

2 Call repmat, passing the scalar structure and the dimensions of the array.

3 Assign values to each structure using standard array indexing and
structure dot notation.

For example, the following code creates X, a 1-by-3 array of scalar structures.
Each element of the array is defined by the structure s, which has two fields,
a and b:

...

8-7

8 Code Generation for MATLAB® Structures

s.a = 0;
s.b = 0;
X = repmat(s,1,3);
X(1).a = 1;
X(2).a = 2;
X(3).a = 3;
X(1).b = 4;
X(2).b = 5;
X(3).b = 6;
...

Defining an Array of Structures Using Concatenation
To create a small array of structures, you can use the concatenation operator,
square brackets ([]), to join one or more structures into an array (see
“Concatenating Matrices”). For code generation, the structures that you
concatenate must have the same size, class, and complexity.

For example, the following code uses concatenation and a local function to
create the elements of a 1-by-3 structure array:

...
W = [sab(1,2) sab(2,3) sab(4,5)];

function s = sab(a,b)
s.a = a;
s.b = b;

...

8-8

Make Structures Persistent

Make Structures Persistent
To make structures persist, you define them to be persistent variables and
initialize them with the isempty statement, as described in “Define and
Initialize Persistent Variables” on page 5-10.

For example, the following function defines structure X to be persistent and
initializes its fields a and b:

function f(u) %#codegen
persistent X

if isempty(X)
X.a = 1;
X.b = 2;

end

8-9

8 Code Generation for MATLAB® Structures

Index Substructures and Fields
Use these guidelines when indexing substructures and fields for code
generation:

Reference substructure field values individually using dot notation

For example, the following MATLAB code uses dot notation to index fields
and substructures:

...
substruct1.a1 = 15.2;
substruct1.a2 = int8([1 2;3 4]);

mystruct = struct('ele1',20.5,'ele2',single(100),
'ele3',substruct1);

substruct2 = mystruct;
substruct2.ele3.a2 = 2*(substruct1.a2);
...

The generated code indexes elements of the structures in this example by
resolving symbols as follows:

Dot Notation Symbol Resolution

substruct1.a1 Field a1 of local structure substruct1

substruct2.ele3.a1 Value of field a1 of field ele3, a substructure of local structure
substruct2

substruct2.ele3.a2(1,1) Value in row 1, column 1 of field a2 of field ele3, a substructure
of local structure substruct2

Reference field values individually in structure arrays

To reference the value of a field in a structure array, you must index into the
array to the structure of interest and then reference that structure’s field
individually using dot notation, as in this example:

...

8-10

Index Substructures and Fields

y = X(1).a % Extracts the value of field a
% of the first structure in array X

...

To reference all the values of a particular field for each structure in an array,
use this notation in a for loop, as in this example:

...
s.a = 0;
s.b = 0;
X = repmat(s,1,5);
for i = 1:5

X(i).a = i;
X(i).b = i+1;

end

This example uses the repmat function to define an array of structures, each
with two fields a and b as defined by s. See “Define Arrays of Structures for
Code Generation” on page 8-7 for more information.

Do not reference fields dynamically

You cannot reference fields in a structure by using dynamic names, which
express the field as a variable expression that MATLAB evaluates at run time
(see “Generate Field Names from Variables”).

8-11

8 Code Generation for MATLAB® Structures

Assign Values to Structures and Fields
Use these guidelines when assigning values to a structure, substructure,
or field for code generation:

Field properties must be consistent across structure-to-structure
assignments

If: Then:

Assigning one structure to another
structure.

Define each structure with the same
number, type, and size of fields.

Assigning one structure to a
substructure of a different structure
and vice versa.

Define the structure with the same
number, type, and size of fields as
the substructure.

Assigning an element of one
structure to an element of another
structure.

The elements must have the same
type and size.

Do not use field values as constants

The values stored in the fields of a structure are not treated as constant
values in generated code. Therefore, you cannot use field values to set the size
or class of other data. For example, the following code generates a compiler
error if variable-sizing is disabled:

...
Y.a = 3;
Y.b = 5;
X = zeros(Y.a,Y.b); % Generates an error

In this example, even though you set fields a and b of structure Y to the
values 3 and 5 respectively, Y.a and Y.b are not constants in generated code.
Therefore, they are not valid arguments to pass to the function zeros.

8-12

Assign Values to Structures and Fields

Note An exception to this behavior occurs if the structure is declared
completely using the struct function

...
Y = struct('a',3,'b',5);
X = zeros(Y.a,Y.b); % Generates a fixed-size 3 X 5 matrix

Do not assign mxArrays to structures

You cannot assign mxArrays to structure elements; convert mxArrays to
known types before code generation (see “Working with mxArrays” on page
13-17).

8-13

8 Code Generation for MATLAB® Structures

Pass Large Structures as Input Parameters
If you generate a MEX function for a MATLAB function that takes a large
structure as an input parameter, for example, a structure containing fields
that are matrices, the MEX function might fail to load. This load failure
occurs because, when you generate a MEX function from a MATLAB function
that has input parameters, the code generation software allocates memory for
these input parameters on the stack. To avoid this issue, pass the structure
by reference to the MATLAB function. For example, if the original function
signature is:

y = foo(a, S)

where S is the structure input, rewrite the function to:

[y, S] = foo(a, S)

8-14

9

Code Generation for
Enumerated Data

• “Enumerated Data Definition for Code Generation” on page 9-2

• “Enumerated Types Supported for Code Generation” on page 9-3

• “When to Use Enumerated Data for Code Generation” on page 9-5

• “Generate Code for Enumerated Data from MATLAB Algorithms” on page
9-6

• “Define Enumerated Data for Code Generation” on page 9-8

• “Instantiate Enumerated Types for Code Generation” on page 9-10

• “Operations on Enumerated Data Allowed for Code Generation” on page
9-11

• “Include Enumerated Data in Control Flow Statements” on page 9-14

• “Customize Enumerated Types Based on int32” on page 9-20

• “Control Names of Enumerated Type Values in Generated Code” on page
9-26

• “Change and Reload Enumerated Data Types” on page 9-28

• “Restrictions on Use of Enumerated Data in for-Loops” on page 9-29

• “Toolbox Functions That Support Enumerated Types for Code Generation”
on page 9-30

9 Code Generation for Enumerated Data

Enumerated Data Definition for Code Generation
To generate efficient standalone code for enumerated data, you must define
and use enumerated types differently than you normally would when running
your code in the MATLAB environment:

What’s Different More Information

Supports integer-based enumerated
types only

“Enumerated Types Supported for
Code Generation” on page 9-3

Name of each enumerated data type
must be unique

“Naming Enumerated Types for
Code Generation” on page 9-9

Each enumerated data type must
be defined in a separate file on the
MATLAB path

“Define Enumerated Data for Code
Generation” on page 9-8 and “How
to Generate Code for Enumerated
Data” on page 9-6

Restricted set of operations “Operations on Enumerated Data
Allowed for Code Generation” on
page 9-11

Restricted use in for-loops “Restrictions on Use of Enumerated
Data in for-Loops” on page 9-29

9-2

Enumerated Types Supported for Code Generation

Enumerated Types Supported for Code Generation

Enumerated Type Based on int32
This enumerated data type is based on the built-in type int32. Use this
enumerated type when generating code from MATLAB algorithms.

Syntax

classdef(Enumeration) type_name < int32

Example

classdef(Enumeration) PrimaryColors < int32
enumeration

Red(1),
Blue(2),
Yellow(4)

end
end

In this example, the statement classdef(Enumeration) PrimaryColors
< int32 means that the enumerated type PrimaryColors is based on the
built-in type int32. As such, PrimaryColors inherits the characteristics
of the int32 type, as well as defining its own unique characteristics. For
example, PrimaryColors is restricted to three enumerated values:

Enumerated Value Enumerated Name Underlying Numeric
Value

Red(1) Red 1

Blue(2) Blue 2

Yellow(4) Yellow 4

How to Use
Define enumerated data in MATLAB code and compile the source file. For
example, to generate C/C++ code from your MATLAB source, you can use

9-3

9 Code Generation for Enumerated Data

codegen, as described in “Generate Code for Enumerated Data from MATLAB
Algorithms” on page 9-6.

Note codegen requires a MATLAB Coder license.

9-4

When to Use Enumerated Data for Code Generation

When to Use Enumerated Data for Code Generation
You can use enumerated types to represent program states and to control
program logic, especially when you need to restrict data to a finite set of
values and refer to these values by name. Even though you can sometimes
achieve these goals by using integers or strings, enumerated types offer the
following advantages:

• Provide more readable code than integers

• Allow more robust error checking than integers or strings

For example, if you mistype the name of an element in the enumerated
type, you get a compile-time error that the element does not belong to the
set of allowable values.

• Produce more efficient code than strings

For example, comparisons of enumerated values execute faster than
comparisons of strings.

9-5

9 Code Generation for Enumerated Data

Generate Code for Enumerated Data from MATLAB
Algorithms

Step Action How?

1
Define an enumerated data type
that inherits from int32.

See “Define Enumerated Data for
Code Generation” on page 9-8.

2
Instantiate the enumerated type
in your MATLAB algorithm.

See “Instantiate Enumerated
Types for Code Generation” on
page 9-10.

3
Compile the function with
codegen.

See “How to Generate Code for
Enumerated Data” on page 9-6.

This workflow requires a MATLAB Coder license.

How to Generate Code for Enumerated Data
Use the command codegen to generate MEX, C, or C++ code from the
MATLAB algorithm that contains the enumerated data (requires a MATLAB
Coder license). Each enumerated data type must be defined on the MATLAB
path in a separate file as a class derived from the built-in type int32. See
“Define Enumerated Data for Code Generation” on page 9-8.

If your function has inputs, you must specify the properties of these inputs
to codegen. For an enumerated data input, use the -args option to pass
one of its allowable values as a sample value. For example, the following
codegen command specifies that the function displayState takes one input
of enumerated data type sysMode.

codegen displayState -args {sysMode.ON}

After executing this command, codegen generates a platform-specific MEX
function that you can test in MATLAB. For example, to test displayState,
type the following command:

displayState(sysMode.OFF)

You should get the following result:

9-6

Generate Code for Enumerated Data from MATLAB® Algorithms

ans =

RED

9-7

9 Code Generation for Enumerated Data

Define Enumerated Data for Code Generation
Follow these steps to define enumerated data for code generation from
MATLAB algorithms:

1 Create a class definition file.

In the MATLAB Command Window, select File > New > Class.

2 Enter the class definition as follows:

classdef(Enumeration) EnumTypeName < int32

For example, the following code defines an enumerated type called sysMode:

classdef(Enumeration) sysMode < int32
...

end

EnumTypeName is a case-sensitive string that must be unique among data
type names and workspace variable names. It must inherit from the
built-in type int32.

3 Define enumerated values in an enumeration section as follows:

classdef(Enumeration) EnumTypeName < int32
enumeration

EnumName(N)
...

end
end

For example, the following code defines a set of two values for enumerated
type sysMode:

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end
end

9-8

Define Enumerated Data for Code Generation

Each enumerated value consists of a string EnumName and an underlying
integer N. Each EnumName must be unique within its type, but can also
appear in other enumerated types. The underlying integers need not be
either consecutive or ordered, nor must they be unique within the type
or across types.

4 Save the file on the MATLAB path.

The name of the file must match the name of the enumerated data type.
The match is case sensitive.

To add a folder to the MATLAB search path, type addpath pathname at
the MATLAB command prompt. For more information, see “What Is the
MATLAB Search Path?”, addpath, and savepath.

For examples of enumerated data type definitions, see “Define Enumerated
Data for Code Generation” on page 9-8.

Naming Enumerated Types for Code Generation
You must use a unique name for each enumerated data type. The name of an
enumerated data type cannot match the name of a toolbox function supported
for code generation, or another data type or a variable in the MATLAB base
workspace. Otherwise, a name conflict occurs.

For example, you cannot name an enumerated data type mode because
MATLAB for code generation provides a toolbox function of the same name.

For a list of toolbox functions supported for code generation, see “Functions
Supported for C/C++ Code Generation — Alphabetical List” on page 4-2.

9-9

9 Code Generation for Enumerated Data

Instantiate Enumerated Types for Code Generation
To instantiate an enumerated type for code generation from MATLAB
algorithms, use dot notation to specify ClassName.EnumName. For an example,
see “Include Enumerated Data in Control Flow Statements” on page 9-14.

9-10

Operations on Enumerated Data Allowed for Code Generation

Operations on Enumerated Data Allowed for Code
Generation

To generate efficient standalone code for enumerated data, you are restricted
to the following operations. The examples are based on the definitions of
the enumeration type LEDcolor described in “Class Definition: LEDcolor”
on page 9-14.

Assignment Operator, =

Example Result

xon = LEDcolor.GREEN
xoff = LEDcolor.RED

xon =

GREEN
xoff =

RED

Relational Operators, < > <= >= == ~=

Example Result

xon == xoff ans =

0

xon <= xoff ans =

1

xon > xoff ans =

0

9-11

9 Code Generation for Enumerated Data

Cast Operation

Example Result

double(LEDcolor.RED) ans =

2

z = 2
y = LEDcolor(z)

z =

2

y =

RED

Indexing Operation

Example Result

m = [1 2]
n = LEDcolor(m)
p = n(LEDcolor.GREEN)

m =

1 2

n =

GREEN RED

p =

GREEN

9-12

Operations on Enumerated Data Allowed for Code Generation

Control Flow Statements: if, switch, while

Statement Example Executable
Example

if
if state == sysMode.ON

led = LEDcolor.GREEN;
else

led = LEDcolor.RED;
end

“if Statement with
Enumerated Data
Types” on page
9-14

switch
switch button

case VCRButton.Stop
state = VCRState.Stop;

case VCRButton.PlayOrPause
state = VCRState.Play;

case VCRButton.Next
state = VCRState.Forward;

case VCRButton.Previous
state = VCRState.Rewind;

otherwise
state = VCRState.Stop;

end

“switch Statement
with Enumerated
Data Types” on
page 9-15

while
while state ~= State.Ready

switch state
case State.Standby

initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

“while Statement
with Enumerated
Data Types” on
page 9-18

9-13

9 Code Generation for Enumerated Data

Include Enumerated Data in Control Flow Statements
The following control statements work with enumerated operands in
generated code. However, there are restrictions (see “Restrictions on Use of
Enumerated Data in for-Loops” on page 9-29).

if Statement with Enumerated Data Types
This example is based on the definition of the enumeration types LEDcolor
and sysMode. The function displayState uses these enumerated data types
to activate an LED display.

Class Definition: sysMode

classdef(Enumeration) sysMode < int32
enumeration

OFF(0)
ON(1)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, sysMode.m.

Class Definition: LEDcolor

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
end

This definition must reside on the MATLAB path in a file called LEDcolor.m.

MATLAB Function: displayState
This function uses enumerated data to activate an LED display, based on the
state of a device. It lights a green LED display to indicate the ON state and
lights a red LED display to indicate the OFF state.

9-14

Include Enumerated Data in Control Flow Statements

function led = displayState(state)
%#codegen

if state == sysMode.ON
led = LEDcolor.GREEN;

else
led = LEDcolor.RED;

end

Build and Test a MEX Function for displayState

1 Generate a MEX function for displayState. Use the -args option to pass
one of the allowable values for the enumerated data input as a sample
value.

codegen displayState -args {sysMode.ON}

2 Test the function. For example,

displayState(sysMode.OFF)

You should get the following result:

ans =

RED

switch Statement with Enumerated Data Types
This example is based on the definition of the enumeration types VCRState
and VCRButton. The function VCR uses these enumerated data types to set
the state of the VCR.

Class Definition: VCRState

classdef(Enumeration) VCRState < int32
enumeration

Stop(0),
Pause(1),
Play(2),
Forward(3),

9-15

9 Code Generation for Enumerated Data

Rewind(4)
end

end

This definition must reside on the MATLAB path in a file with the same
name as the class, VCRState.m.

Class Definition: VCRButton

classdef(Enumeration) VCRButton < int32
enumeration

Stop(1),
PlayOrPause(2),
Next(3),
Previous(4)

end
end

This definition must reside on the MATLAB path in a file with the same name
as the class, VCRButton.m.

MATLAB Function: VCR
This function uses enumerated data to set the state of a VCR, based on the
initial state of the VCR and the state of the VCR button.

function s = VCR(button)
%#codegen

persistent state

if isempty(state)
state = VCRState.Stop;

end

switch state
case {VCRState.Stop, VCRState.Forward, VCRState.Rewind}

state = handleDefault(button);
case VCRState.Play

switch button

9-16

Include Enumerated Data in Control Flow Statements

case VCRButton.PlayOrPause, state = VCRState.Pause;
otherwise, state = handleDefault(button);

end
case VCRState.Pause

switch button
case VCRButton.PlayOrPause, state = VCRState.Play;
otherwise, state = handleDefault(button);

end
end
s = state;

function state = handleDefault(button)
switch button

case VCRButton.Stop, state = VCRState.Stop;
case VCRButton.PlayOrPause, state = VCRState.Play;
case VCRButton.Next, state = VCRState.Forward;
case VCRButton.Previous, state = VCRState.Rewind;
otherwise, state = VCRState.Stop;

end

Build and Test a MEX Function for VCR

1 Generate a MEX function for VCR. Use the -args option to pass one of the
allowable values for the enumerated data input as a sample value.

codegen -args {VCRButton.Stop} VCR

2 Test the function. For example,

s = VCR(VCRButton.Stop)

You should get the following result:

s =

Stop

9-17

9 Code Generation for Enumerated Data

while Statement with Enumerated Data Types
This example is based on the definition of the enumeration type State. The
function Setup uses this enumerated data type to set the state of a device.

Class Definition: State

classdef(Enumeration) State < int32
enumeration

Standby(0),
Boot(1),
Ready(2)

end
end

This definition must reside on the MATLAB path in a file with the same
name as the class, State.m.

MATLAB Function: Setup
The following function Setup uses enumerated data to set the state of a device.

function s = Setup(initState)
%#codegen

state = initState;

if isempty(state)
state = State.Standby;

end

while state ~= State.Ready
switch state

case State.Standby
initialize();
state = State.Boot;

case State.Boot
boot();
state = State.Ready;

end
end

9-18

Include Enumerated Data in Control Flow Statements

s = state;

function initialize()
% Perform initialization.

function boot()
% Boot the device.

Build and Test a MEX Executable for Setup

1 Generate a MEX executable for Setup. Use the -args option to pass one of
the allowable values for the enumerated data input as a sample value.

codegen Setup -args {State.Standby}

2 Test the function. For example,

s = Setup(State.Standby)

You should get the following result:

s =

Ready

9-19

9 Code Generation for Enumerated Data

Customize Enumerated Types Based on int32

About Customizing Enumerated Types
You can customize an enumerated type by using the same techniques that
work with MATLAB classes, as described in Modifying Superclass Methods
and Properties. A primary source of customization are the methods associated
with an enumerated type.

Enumerated class definitions can include an optional methods section.
You can override the following methods to customize the behavior of an
enumerated type. To override a method, include a customized version of the
method in the methods section in the enumerated class definition. If you do
not want to override the inherited methods, omit the methods section.

9-20

Customize Enumerated Types Based on int32

Method Description Default Value
Returned or
Specified

When to Use

addClassNameToEnumNames Specifies whether
the class name
becomes a prefix in
the generated code.

true — prefix is
used

If you do not want
the class name to
become a prefix
in the generated
code, override
this method to set
the return value
to false. See
“Control Names
of Enumerated
Type Values in
Generated Code” on
page 9-26.

getDefaultValue Returns the default
enumerated value.

'' If you want the
default value for the
enumerated type
to be something
other than the
first value listed
in the enumerated
class definition,
override this
method to specify a
default value. See
“Specify a Default
Enumerated Value”
on page 9-22.

9-21

9 Code Generation for Enumerated Data

Method Description Default Value
Returned or
Specified

When to Use

getHeaderFile Specifies the file
in which the
enumerated class
is defined for code
generation.

'' If you want to use
an enumerated
class definition
that is specified in
a custom header
file, override this
method to return
the path to this
header file. In
this case, the code
generation software
does not generate
the class definition.
See “Specify a
Header File” on
page 9-23

Specify a Default Enumerated Value
The code generation software and related generated code use an enumerated
data type’s default value when you do not provide an initial value.

Unless you specify otherwise, the default value for an enumerated type is the
first value in the enumerated class definition. To specify a different default
value, add your own getDefaultValue method to the methods section. The
following code shows a shell for the getDefaultValue method:

function retVal = getDefaultValue()
% GETDEFAULTVALUE Returns the default enumerated value.
% This value must be an instance of the enumerated class.
% If this method is not defined, the first enumerated value is used.

retVal = ThisClass.EnumName;
end

To customize this method, provide a value for ThisClass.EnumName that
specifies the desired default.ThisClass must be the name of the class within

9-22

Customize Enumerated Types Based on int32

which the method exists. EnumName must be the name of an enumerated value
defined in that class. For example:

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end
methods (Static)
function y = getDefaultValue()

y = LEDcolor.RED;
end

end
end

This example defines the default as LEDcolor.RED. If this method does not
appear, the default value would be LEDcolor.GREEN, because that is the first
value listed in the enumerated class definition.

Specify a Header File
To prevent the declaration of an enumerated type from being embedded in the
generated code, allowing you to provide the declaration in an external file,
include the following method in the enumerated class’s methods section:

function y = getHeaderFile()
% GETHEADERFILE File where type is defined for generated code.
% If specified, this file is #included where required in the code.
% Otherwise, the type is written out in the generated code.
y = 'filename';
end

Substitute a legal filename for filename. Be sure to provide a filename
suffix, typically .h. Providing the method replaces the declaration that would
otherwise have appeared in the generated code with a #include statement
like:

#include "imported_enum_type.h"

The getHeaderFile method does not create the declaration file itself. You
must provide a file of the specified name that declares the enumerated data

9-23

9 Code Generation for Enumerated Data

type. The file can also contain definitions of enumerated types that you do not
use in your MATLAB code.

For example, to use the definition of LEDcolor in my_LEDcolor.h:

1 Modify the definition of LEDcolor to override the getHeaderFile method
to return the name of the external header file:

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),
RED(2),

end

methods(Static)
function y=getHeaderFile()

y='my_LEDcolor.h';
end

end
end

2 In the current folder, provide a header file, my_LEDcolor.h, that contains
the definition:

typedef enum LEDcolor
{

GREEN = 1,
RED

} LEDcolor;

3 Generate a library for the function displayState that takes one input
of enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState,
and supporting files in the default folder, codegen/lib/displayState.

4 Click the View Report link.

9-24

Customize Enumerated Types Based on int32

5 In the report, on the C Code tab, click the link to the
displayState_types.h file.

The header file contains a #include statement for the external header file.

#include "my_LEDcolor.h"

It does not include a declaration for the enumerated class.

9-25

9 Code Generation for Enumerated Data

Control Names of Enumerated Type Values in Generated
Code

This example shows how to control the name of enumerated type values in
code generated by MATLAB Coder. (Requires a MATLAB Coder license.)
The example uses the enumerated data type definitions and function
displayState described in “Include Enumerated Data in Control Flow
Statements” on page 9-14.

1 Generate a library for the function displayState that takes one input
of enumerated data type sysMode.

codegen -config:lib -report displayState -args {sysMode.ON}

codegen generates a C static library with the default name, displayState,
and supporting files in the default folder, codegen/lib/displayState.

2 Click the View Report link.

3 In the report, on the C Code tab, click the link to the
displayState_types.h file.

The report displays the header file containing the enumerated data type
definition.

typedef enum LEDcolor
{

LEDcolor_GREEN = 1,
LEDcolor_RED

} LEDcolor;

The enumerated value names include the class name prefix LEDcolor_.

4 Modify the definition of LEDcolor to override the
addClassNameToEnumNames method. Set the return value to false instead
of true so that the enumerated value names in the generated code do not
contain the class prefix.

classdef(Enumeration) LEDcolor < int32
enumeration

GREEN(1),

9-26

Control Names of Enumerated Type Values in Generated Code

RED(2),
end

methods(Static)
function y=addClassNameToEnumNames()

y=false;
end

end
end

5 Clear existing class instances:

clear classes

6 Generate code again.

codegen -config:lib -report displayState -args {sysMode.ON}

7 Open the code generation report and look at the enumerated type definition
in displayState_types.h.

typedef enum LEDcolor
{

GREEN = 1,
RED

} LEDcolor;

This time the enumerated value names do not include the class name prefix.

For more information, see:

• codegen

• “Include Enumerated Data in Control Flow Statements” on page 9-14 for
a description of the example function displayState and its enumerated
type definitions

9-27

9 Code Generation for Enumerated Data

Change and Reload Enumerated Data Types
You can change the definition of an enumerated data type by editing and
saving the file that contains the definition. You do not need to inform
MATLAB that a class definition has changed. MATLAB automatically reads
the modified definition when you save the file. However, the class definition
changes do not take full effect if class instances (enumerated values) exist
that reflect the previous class definition. Such instances might exist in the
base workspace or might be cached. The following table explains options for
removing instances of an enumerated data type from the base workspace
and cache.

If In Base Workspace... If In Cache...

Do one of the following:
• Locate and delete specific obsolete
instances.

• Delete the classes from the
workspace by using the clear
classes command. For more
information, see clear.

• Clear MEX functions that are
caching instances of the class.

9-28

Restrictions on Use of Enumerated Data in for-Loops

Restrictions on Use of Enumerated Data in for-Loops
Do not use enumerated data as the loop counter variable in for-
loops

To iterate over a range of enumerated data with consecutive values, you can
cast the enumerated data to int32 in the loop counter.

For example, suppose you define an enumerated type ColorCodes as follows:

classdef(Enumeration) ColorCodes < int32
enumeration

Red(1),
Blue(2),
Green(3)
Yellow(4)
Purple(5)

end
end

Because the enumerated values are consecutive, you can use ColorCodes
data in a for-loop like this:

...
for i = int32(ColorCodes.Red):int32(ColorCodes.Purple)

c = ColorCodes(i);
...

end

9-29

9 Code Generation for Enumerated Data

Toolbox Functions That Support Enumerated Types for
Code Generation

The following MATLAB toolbox functions support enumerated types for code
generation:

• cast

• cat

• circshift

• flipdim

• fliplr

• flipud

• histc

• ipermute

• isequal

• isequaln

• isfinite

• isinf

• isnan

• issorted

• length

• permute

• repmat

• reshape

• rot90

• shiftdim

• sort

• sortrows

9-30

Toolbox Functions That Support Enumerated Types for Code Generation

• squeeze

9-31

9 Code Generation for Enumerated Data

9-32

10

Code Generation for
MATLAB Classes

• “MATLAB Classes Definition for Code Generation” on page 10-2

• “Classes That Support Code Generation” on page 10-8

• “Generate Code for MATLAB Value Classes” on page 10-9

• “Generate Code for MATLAB Handle Classes and System Objects” on
page 10-15

• “MATLAB Classes in Code Generation Reports” on page 10-18

• “Troubleshooting Issues with MATLAB Classes” on page 10-21

10 Code Generation for MATLAB® Classes

MATLAB Classes Definition for Code Generation
To generate efficient standalone code for MATLAB classes, you must use
classes differently than you normally would when running your code in the
MATLAB environment.

What’s Different More Information

Class must be in a single file.
Because of this limitation, code
generation is not supported for a
class definition that uses an @-folder.

“Creating a Single, Self-Contained
Class Definition File”

Restricted set of language features. “Language Limitations” on page 10-2

Restricted set of code generation
features.

“Code Generation Features Not
Compatible with Classes” on page
10-3

Definition of class properties. “Defining Class Properties for Code
Generation” on page 10-4

Use of handle classes. “Generate Code for MATLAB Handle
Classes and System Objects” on page
10-15

Calls to base class constructor. “Calls to Base Class Constructor” on
page 10-6

Global variables containing
MATLAB objects are not supported
for code generation.

N/A

Language Limitations
Although code generation support is provided for common features of classes
such as properties and methods, there are a number of advanced features
which are not supported, such as:

• Events

• Listeners

• Arrays of objects

10-2

MATLAB® Classes Definition for Code Generation

• Recursive data structures

- Linked lists

- Trees

- Graphs

• Overloadable operators subsref, subsassign, and subsindex

In MATLAB, classes can define their own versions of the subsref,
subsassign, and subsindex methods. Code generation does not support
classes that have their own definitions of these methods.

• The empty method

In MATLAB, classes have a built-in static method, empty, which creates an
empty array of the class. Code generation does not support this method.

• The following MATLAB handle class methods:

- addlistener

- delete

- eq

- findobj

- findpro

Code Generation Features Not Compatible with
Classes

• You can generate code for entry-point MATLAB functions that use classes,
but you cannot generate code directly for a MATLAB class.

For example, if ClassNameA is a class definition, you cannot generate code
by executing:

codegen ClassNameA

• If an entry-point MATLAB function has an input or output that is a
MATLAB class, you cannot generate code for this function.

For example, if function foo takes one input, a, that is a MATLAB object,
you cannot generate code for foo by executing:

10-3

10 Code Generation for MATLAB® Classes

codegen foo -args {a}

• You cannot generate code for a value class that has a set.prop method.
For example, you cannot generate code for the following Square class
because of the set.side method.

classdef Square < Shape %#codegen
properties

side;
end
methods

function obj = Square(side)
obj = obj@Shape(side^2);
obj.side = side;

end
function set.side(obj,value)

obj.side = value;
obj.area = value^2;

end
end

end

To generate code for this class, modify the class definition to remove the
set.side method.

• Code generation does not support assigning an object of a value class into a
nontunable property. For example, obj.prop=v; is invalid when prop is a
nontunable property and v is an object based on a value class.

• You cannot use coder.extrinsic to declare a class or method as extrinsic.

• You cannot pass a MATLAB class to the coder.ceval function.

• If you use classes in code in the MATLAB Function block, you cannot use
the debugger to view class information.

• The coder.nullcopy function does not support MATLAB classes as inputs.

Defining Class Properties for Code Generation
For code generation, you must define class properties differently than you
normally would when running your code in the MATLAB environment:

10-4

MATLAB® Classes Definition for Code Generation

• After defining a property, do not assign it an incompatible type. Do not use
a property before attempting to grow it.

When you define class properties for code generation, consider the same
factors that you take into account when defining variables. In the MATLAB
language, variables can change their class, size, or complexity dynamically
at run time so you can use the same variable to hold a value of varying
class, size, or complexity. C and C++ use static typing. Before using
variables, to determine their type, the code generation software requires a
complete assignment to each variable. Similarly, before using properties,
you must explicitly define their class, size, and complexity.

• Initial values:

- If the property does not have an explicit initial value, the code generation
software assumes that it is undefined at the beginning of the constructor.
The code generation software does not assign an empty matrix as the
default.

- If the property does not have an initial value and the code generation
software cannot determine that the property is assigned prior to first
use, the software generates a compilation error.

- For System objects, if a nontunable property is a structure, you must
completely assign the structure. You cannot do partial assignment
using subscripting.

For example, for a nontunable property, you can use the following
assignment:

mySystemObject.nonTunableProperty=struct('fieldA','a','fieldB','b');

You cannot use the following partial assignments:

mySystemObject.nonTunableProperty.fieldA = a;
mySystemObject.nonTunableProperty.fieldB = b;

- If dynamic memory allocation is enabled, code generation supports
variable-size properties for handle classes. Without dynamic memory
allocation, you cannot generate code for handle classes that have
variable-size properties.

- coder.varsize is not supported for class properties.

10-5

10 Code Generation for MATLAB® Classes

• MATLAB computes class initial values at class loading time before code
generation. If you use persistent variables in MATLAB class property
initialization, the value of the persistent variable computed when the class
loads belongs to MATLAB; it is not the value used at code generation
time. If you use coder.target in MATLAB class property initialization,
coder.target('MATLAB') returns true (1).

Calls to Base Class Constructor
If a class constructor contains a call to the constructor of the base class, the
call to the base class constructor must come before for, if, return, switch
or while statements.

For example, if you define a class B based on class A:

classdef B < A
methods

function obj = B(varargin)
if nargin == 0

a = 1;
b = 2;

elseif nargin == 1
a = varargin{1};
b = 1;

elseif nargin == 2
a = varargin{1};
b = varargin{2};

end
obj = obj@A(a,b);

end

end
end

Because the class definition for B uses an if statement before calling the base
class constructor for A, you cannot generate code for function callB:

function [y1,y2] = callB
x = B;
y1 = x.p1;
y2 = x.p2;

10-6

MATLAB® Classes Definition for Code Generation

end

However, you can generate code for callB if you define class B as:

classdef B < A
methods

function obj = NewB(varargin)
[a,b] = getaandb(varargin{:});
obj = obj@A(a,b);

end

end
end

function [a,b] = getaandb(varargin)
if nargin == 0

a = 1;
b = 2;

elseif nargin == 1
a = varargin{1};
b = 1;

elseif nargin == 2
a = varargin{1};
b = varargin{2};

end
end

10-7

10 Code Generation for MATLAB® Classes

Classes That Support Code Generation
You can generate code for MATLAB value and handle classes and user-defined
System objects. Your class can have multiple methods and properties and can
inherit from multiple classes.

To generate code for: Example:

Value classes “Generate Code for MATLAB Value
Classes” on page 10-9

Handle classes including
user-defined System objects

“Generate Code for MATLAB Handle
Classes and System Objects” on page
10-15

For more information, see:

• “Classes in the MATLAB Language”

• “MATLAB Classes Definition for Code Generation” on page 10-2

10-8

Generate Code for MATLAB® Value Classes

Generate Code for MATLAB Value Classes
This example shows how to generate code for a MATLAB value class and then
view the generated code in the code generation report.

1 In a writable folder, create a MATLAB value class, Shape. Save the code
as Shape.m.

classdef Shape
% SHAPE Create a shape at coordinates
% centerX and centerY

properties
centerX;
centerY;

end
properties (Dependent = true)

area;
end
methods

function out = get.area(obj)
out = obj.getarea();

end
function obj = Shape(centerX,centerY)

obj.centerX = centerX;
obj.centerY = centerY;

end
end
methods(Abstract = true)

getarea(obj);
end
methods(Static)

function d = distanceBetweenShapes(shape1,shape2)
xDist = abs(shape1.centerX - shape2.centerX);
yDist = abs(shape1.centerY - shape2.centerY);
d = sqrt(xDist^2 + yDist^2);

end
end

end

10-9

10 Code Generation for MATLAB® Classes

2 In the same folder, create a class, Square, that is a subclass of Shape. Save
the code as Square.m.

classdef Square < Shape
% Create a Square at coordinates center X and center Y
% with sides of length of side

properties
side;

end
methods

function obj = Square(side,centerX,centerY)
obj@Shape(centerX,centerY);
obj.side = side;

end
function Area = getarea(obj)

Area = obj.side^2;
end

end
end

3 In the same folder, create a class, Rhombus, that is a subclass of Shape.
Save the code as Rhombus.m.

classdef Rhombus < Shape
properties

diag1;
diag2;

end
methods

function obj = Rhombus(diag1,diag2,centerX,centerY)
obj@Shape(centerX,centerY);
obj.diag1 = diag1;
obj.diag2 = diag2;

end
function Area = getarea(obj)

Area = 0.5*obj.diag1*obj.diag2;
end

end
end

4 Write a function that uses this class.

10-10

Generate Code for MATLAB® Value Classes

function [TotalArea, Distance] = use_shape
%#codegen
s = Square(2,1,2);
r = Rhombus(3,4,7,10);
TotalArea = s.area + r.area;
Distance = Shape.distanceBetweenShapes(s,r);

5 Generate a static library for use_shape and generate a code generation
report.

codegen -config:lib -report use_shape

codegen generates a C static library with the default name, use_shape,
and supporting files in the default folder, codegen/lib/use_shape.

6 Click the View report link.

7 In the report, on theMATLAB code tab, click the link to the Rhombus class.

The report displays the class definition of the Rhombus class and highlights
the class constructor. On the Variables tab, it provides details of the
variables used in the class. If a variable is a MATLAB object, by default,
the report displays the object without displaying its properties. To view the
complete list of properties, expand the list as shown for obj.

10-11

10 Code Generation for MATLAB® Classes

8 At the top right side of the report, expand the Calls list.

The Calls list shows that there is a call to the Rhombus constructor from
use_shape and that this constructor calls the Shape constructor.

10-12

Generate Code for MATLAB® Value Classes

9 The constructor for the Rhombus class calls the Shape method of the base
Shape class: obj@Shape. In the report, click the Shape link in this call.

10-13

10 Code Generation for MATLAB® Classes

The link takes you to the Shape method in the Shape class definition.

10-14

Generate Code for MATLAB® Handle Classes and System Objects

Generate Code for MATLAB Handle Classes and System
Objects

This example shows how to generate code for a user-defined System object
and then view the generated code in the code generation report.

1 In a writable folder, create a System object, AddOne, which subclasses from
matlab.System. Save the code as AddOne.m.

classdef AddOne < matlab.System
% ADDONE Compute an output value that increments the input by one

methods (Access=protected)
% stepImpl method is called by the step method
function y = stepImpl(~,x)

y = x+1;
end

end
end

2 Write a function that uses this System object.

function y = testAddOne(x)
%#codegen

p = AddOne();
y = p.step(x);

end

3 Generate a MEX function for this code.

codegen -report testAddOne -args {0}

The -report option instructs codegen to generate a code generation report,
even if no errors or warnings occur. The -args option specifies that the
testAddOne function takes one scalar double input.

>> codegen -report testAddOne -args {0}
Code generation successful: View report

4 Click the View report link.

10-15

10 Code Generation for MATLAB® Classes

5 In the report, on the MATLAB Code tab Functions panel, click
testAddOne, then click the Variables tab. You can view information about
the variable p on this tab.

6 To view the class definition, on the Classes panel, click AddOne.

10-16

Generate Code for MATLAB® Handle Classes and System Objects

10-17

10 Code Generation for MATLAB® Classes

MATLAB Classes in Code Generation Reports

What Reports Tell You About Classes
Code generation reports:

• Provide a hierarchical tree of the classes used in your MATLAB code.

• Display a list of methods for each class in the MATLAB code tab.

• Display the objects used in your MATLAB code together with their
properties on the Variables tab.

• Provide a filter so that you can sort methods by class, size, and complexity.

• List the set of calls from and to the selected method in the Calls list.

How Classes Appear in Code Generation Reports

In the MATLAB Code Tab
The report displays an alphabetical hierarchical list of the classes used in the
your MATLAB code. For each class, you can:

• Expand the class information to view the class methods.

• View a class method by clicking its name. The report displays the methods
in the context of the full class definition.

• Filter the methods by size, complexity, and class by using the Filter
functions and methods option.

Default Constructors. If a class has a default constructor, the report
displays the constructor in italics.

Specializations. If the same class is specialized into multiple different
classes, the report differentiates the specializations by grouping each one
under a single node in the tree. The report associates the class definition
functions and static methods with the primary node. It associates the
instance-specific methods with the corresponding specialized node.

For example, consider a base class, Shape that has two specialized subclasses,
Rhombus and Square. The Shape class has an abstract method, getarea,

10-18

MATLAB® Classes in Code Generation Reports

and a static method, distanceBetweenShapes. The code generation report,
displays a node for the specialized Rhombus and Square classes with their
constructors and getarea method. It displays a node for the Shape class and
its associated static method, distanceBetweenShapes, and two instances of
the Shape class, Shape1 and Shape2.

Packages. If you define classes as part of a package, the report displays
the package in the list of classes. You can expand the package to view the
classes that it contains. For more information about packages, see “Packages
Create Namespaces”.

In the Variables Tab
The report displays the objects in the selected function or class. By default,
for classes that have properties, the list of properties is collapsed. Click the
+ symbol next to the object name to open the list.

The report displays the properties using just the base property name, not the
fully qualified name. For example, if your code uses variable obj1 that is a

10-19

10 Code Generation for MATLAB® Classes

MATLAB object with property prop1, then the report displays the property as
prop1 not obj1.prop1. When you sort the Variables column, the sort order
is based on the fully qualified property name.

In the Call Stack
The call stack lists the functions and methods in the order that the top-level
function calls them. It also lists the local functions that each function calls.

How to Generate a Code Generation Report
Add the -report option to your codegen command (requires a MATLAB
Coder license)

10-20

Troubleshooting Issues with MATLAB® Classes

Troubleshooting Issues with MATLAB Classes

Class class does not have a property with name name
If a MATLAB class has a method, mymethod, that returns a handle class
with a property, myprop, you cannot generate code for the following type of
assignment:

obj.mymethod().myprop=...

For example, consider the following classes:

classdef MyClass < handle
properties

myprop
end
methods

function this = MyClass
this.myprop = MyClass2;

end
function y = mymethod(this)

y = this.myprop;
end

end
end

classdef MyClass2 < handle
properties

aa
end

end

You cannot generate code for function foo.

function foo

h = MyClass;

h.mymethod().aa = 12;

10-21

10 Code Generation for MATLAB® Classes

In this function, h.mymethod() returns a handle object of type MyClass2. In
MATLAB, the assignment h.mymethod().aa = 12; changes the property of
that object. Code generation does not support this assignment.

Workaround
Rewrite the code to return the object and then assign a value to a property
of the object.

function foo

h = MyClass;

b=h.mymethod();
b.aa=12;

10-22

11

Code Generation for
Function Handles

• “Function Handle Definition for Code Generation” on page 11-2

• “Define and Pass Function Handles for Code Generation” on page 11-3

• “Function Handle Limitations for Code Generation” on page 11-5

11 Code Generation for Function Handles

Function Handle Definition for Code Generation
You can use function handles to invoke functions indirectly and parameterize
operations that you repeat frequently. You can perform the following
operations with function handles:

• Define handles that reference user-defined functions and built-in functions
supported for code generation (see “Functions Supported for C/C++ Code
Generation — Alphabetical List” on page 4-2)

Note You cannot define handles that reference extrinsic MATLAB
functions.

• Define function handles as scalar values

• Pass function handles as arguments to other functions (excluding extrinsic
functions)

To generate efficient standalone code for enumerated data, you are restricted
to using a subset of the operations you can perform with function handles in
MATLAB, as described in “Function Handle Limitations for Code Generation”
on page 11-5

11-2

Define and Pass Function Handles for Code Generation

Define and Pass Function Handles for Code Generation
The following code example shows how to define and call function handles for
code generation. You can copy the example to a MATLAB Function block
in Simulink or MATLAB function in Stateflow. To convert this function to
a MEX function using codegen, uncomment the two calls to the assert
function, highlighted below:

function addval(m)
%#codegen

% Define class and size of primary input m
% Uncomment next two lines to build MEX function with codegen
% assert(isa(m,'double'));
% assert(all (size(m) == [3 3]));

% Pass function handle to addone
% to add one to each element of m
m = map(@addone, m);
disp(m);

% Pass function handle to addtwo
% to add two to each element of m
m = map(@addtwo, m);
disp(m);

function y = map(f,m)
y = m;
for i = 1:numel(y)

y(i) = f(y(i));
end

function y = addone(u)
y = u + 1;

function y = addtwo(u)
y = u + 2;

This code passes function handles @addone and @addtwo to the function map
which increments each element of the matrix m by the amount prescribed

11-3

11 Code Generation for Function Handles

by the referenced function. Note that map stores the function handle in the
input variable f and then uses f to invoke the function — in this case addone
first and then addtwo.

If you have MATLAB Coder, you can use the function codegen to convert the
function addval to a MEX executable that you can run in MATLAB. Follow
these steps:

1 At the MATLAB command prompt, issue this command:

codegen addval

2 Define and initialize a 3-by-3 matrix by typing a command like this at
the MATLAB prompt:

m = zeros(3)

3 Execute the function by typing this command:

addval(m)

You should see the following result:

0 0 0
0 0 0
0 0 0

1 1 1
1 1 1
1 1 1

3 3 3
3 3 3
3 3 3

For more information, see “MEX Function Generation at the Command Line”.

11-4

Function Handle Limitations for Code Generation

Function Handle Limitations for Code Generation
Function handles must be scalar values.

You cannot store function handles in matrices or structures.

You cannot use the same bound variable to reference different
function handles.

After you bind a variable to a specific function, you cannot use the same
variable to reference two different function handles, as in this example

%Incorrect code
...
x = @plus;
x = @minus;
...

This code produces a compilation error.

You cannot pass function handles to or from extrinsic functions.

You cannot pass function handles to or from feval and other extrinsic
MATLAB functions. For more information, see “Declaring MATLAB
Functions as Extrinsic Functions” on page 13-12

You cannot pass function handles to or from primary functions.

You cannot pass function handles as inputs to or outputs from primary
functions. For example, consider this function:

function x = plotFcn(fhandle, data)

assert(isa(fhandle,'function_handle') && isa(data,'double'));

plot(data, fhandle(data));
x = fhandle(data);

In this example, the function plotFcn receives a function handle and its
data as primary inputs. plotFcn attempts to call the function referenced by

11-5

11 Code Generation for Function Handles

the fhandle with the input data and plot the results. However, this code
generates a compilation error, indicating that the function isa does not
recognize 'function_handle' as a class name when called inside a MATLAB
function to specify properties of primary inputs.

You cannot view function handles from the debugger

You cannot display or watch function handles from the debugger. They
appear as empty matrices.

11-6

12

Defining Functions for Code
Generation

• “Specify Variable Numbers of Arguments” on page 12-2

• “Supported Index Expressions” on page 12-3

• “Apply Operations to a Variable Number of Arguments” on page 12-4

• “Implement Wrapper Functions” on page 12-7

• “Pass Property/Value Pairs” on page 12-8

• “Variable Length Argument Lists for Code Generation” on page 12-10

12 Defining Functions for Code Generation

Specify Variable Numbers of Arguments
You can use varargin in a function definition to specify that the function
accepts a variable number of input arguments for a given input argument.
You can use varargout in a function definition to specify that the function
returns a variable number of arguments for a given output argument.

When you use varargin and varargout for code generation, there are the
following limitations:

• You cannot use varargout in the function definition for a top-level function.

• You cannot use varargin in the function definition for a top-level function
in a MATLAB Function block in a Simulink model, or in a MATLAB
function in a Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the
code generation software generates the function with a fixed number of
arguments. This fixed number of arguments is based on the number of
example arguments that you provide on the command line or in a MATLAB
Coder project test file.

Common applications of varargin and varargout for code generation are to:

• “Apply Operations to a Variable Number of Arguments” on page 12-4

• “Implement Wrapper Functions” on page 12-7

• “Pass Property/Value Pairs” on page 12-8

Code generation relies on loop unrolling to produce simple and efficient code
for varargin and varargout. This technique permits most common uses
of varargin and varargout, but some uses are not allowed (see “Variable
Length Argument Lists for Code Generation” on page 12-10).

For more information about using varargin and varargout in MATLAB
functions, see Passing Variable Numbers of Arguments.

12-2

Supported Index Expressions

Supported Index Expressions
In MATLAB, varargin and varargout are cell arrays. Generated code does
not support cell arrays, but does allow you to use the most common syntax
— curly braces {} — for indexing into varargin and varargout arrays, as
in this example:

%#codegen
function [x,y,z] = fcn(a,b,c)
[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i};
end

You can use the following index expressions. The exp arguments must be
constant expressions or depend on a loop index variable.

Expression Description

varargin{exp} Read the value of element
exp

varargin{exp1: exp2} Read the values of elements
exp1 through exp2

varargin
(read only)

varargin{:} Read the values of all
elements

varargout
(read and write)

varargout{exp} Read or write the value of
element exp

Note The use of () is not supported for indexing into varargin and
varargout arrays.

12-3

12 Defining Functions for Code Generation

Apply Operations to a Variable Number of Arguments
You can use varargin and varargout in for-loops to apply operations to
a variable number of arguments. To index into varargin and varargout
arrays in generated code, the value of the loop index variable must be known
at compile time. Therefore, during code generation, the compiler attempts
to automatically unroll these for-loops. Unrolling eliminates the loop logic
by creating a separate copy of the loop body in the generated code for each
iteration. Within each iteration, the loop index variable becomes a constant.
For example, the following function automatically unrolls its for-loop in the
generated code:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

When to Force Loop Unrolling
To automatically unroll for-loops containing varargin and varargout
expressions, the relationship between the loop index expression and the index
variable must be determined at compile time.

In the following example, the function fcn cannot detect a logical relationship
between the index expression j and the index variable i:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = 1:length(varargin)

j = j+1;
varargout{j} = varargin{j};

12-4

Apply Operations to a Variable Number of Arguments

end

As a result, the function does not unroll the loop and generates a compilation
error:

Nonconstant expression or empty matrix.
This expression must be constant because
its value determines the size or class of some expression.

To fix the problem, you can force loop unrolling by wrapping the loop header
in the function coder.unroll, as follows:

%#codegen
function [x,y,z] = fcn(a,b,c)

[x,y,z] = subfcn(a,b,c);

function varargout = subfcn(varargin)
j = 0;
for i = coder.unroll(1:length(varargin))

j = j + 1;
varargout{j} = varargin{j};

end;

Using Variable Numbers of Arguments in a for-Loop
The following example multiplies a variable number of input dimensions in
inches by 2.54 to convert them to centimeters:

%#codegen
function [cmlen,cmwth,cmhgt] = conv_2_metric(inlen,inwth,inhgt)

[cmlen,cmwth,cmhgt] = inch_2_cm(inlen,inwth,inhgt);

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

12-5

12 Defining Functions for Code Generation

Key Points About the Example

• varargin and varargout appear in the local function inch_2_cm, not in
the top-level function conv_2_metric.

• The index into varargin and varargout is a for-loop variable

For more information, see “Variable Length Argument Lists for Code
Generation” on page 12-10.

12-6

Implement Wrapper Functions

Implement Wrapper Functions
You can use varargin and varargout to write wrapper functions that accept
up to 64 inputs and pass them directly to another function.

Passing Variable Numbers of Arguments from One
Function to Another
The following example passes a variable number of inputs to different
optimization functions, based on a specified input method:

%#codegen
function answer = fcn(method,a,b,c)
answer = optimize(method,a,b,c);

function answer = optimize(method,varargin)
if strcmp(method,'simple')

answer = simple_optimization(varargin{:});
else

answer = complex_optimization(varargin{:});
end

...

Key Points About the Example

• You can use {:} to read all elements of varargin and pass them to another
function.

• You can mix variable and fixed numbers of arguments.

For more information, see “Variable Length Argument Lists for Code
Generation” on page 12-10.

12-7

12 Defining Functions for Code Generation

Pass Property/Value Pairs
You can use varargin to pass property/value pairs in functions. However,
for code generation, you must take precautions to avoid type mismatch errors
when evaluating varargin array elements in a for-loop:

If Do This:

You assign varargin array elements
to local variables in the for-loop

Verify that for all pairs, the size,
type, and complexity are the same
for each property and the same for
each value

Properties or values have different
sizes, types, or complexity

Do not assign varargin array
elements to local variables in a
for-loop; reference the elements
directly

For example, in the following function test1, the sizes of the property strings
and numeric values are not the same in each pair:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

name = varargin{i};
value = varargin{i+1};
switch name

case 'size'
v = set_size(v, value);

case 'rgb'
v = set_color(v, value);

otherwise
end

end
end

12-8

Pass Property/Value Pairs

...

Generated code determines the size, type, and complexity of a local variable
based on its first assignment. In this example, the first assignments occur
in the first iteration of the for-loop:

• Defines local variable name with size equal to 4

• Defines local variable value with a size of scalar

However, in the second iteration, the size of the property string changes to
3 and the size of the numeric value changes to a vector, resulting in a type
mismatch error. To avoid such errors, reference varargin array values
directly, not through local variables, as highlighted in this code:

%#codegen
function test1

v = create_value('size', 18, 'rgb', [240 9 44]);
end

function v = create_value(varargin)
v = new_value();
for i = 1 : 2 : length(varargin)

switch varargin{i}
case 'size'

v = set_size(v, varargin{i+1});
case 'rgb'

v = set_color(v, varargin{i+1});
otherwise

end
end

end
...

12-9

12 Defining Functions for Code Generation

Variable Length Argument Lists for Code Generation
Use variable length argument lists in top-level functions according to
guidelines

When you use varargin and varargout for code generation, there are the
following limitations:

• You cannot use varargout in the function definition for a top-level function.

• You cannot use varargin in the function definition for a top-level function
in a MATLAB Function block in a Simulink model, or in a MATLAB
function in a Stateflow diagram.

• If you use varargin to define an argument to a top-level function, the
code generation software generates the function with a fixed number of
arguments. This fixed number of arguments is based on the number of
example arguments that you provide on the command line or in a MATLAB
Coder project test file.

A top-level function is:

• The function called by Simulink in a MATLAB Function block or by
Stateflow in a MATLAB function.

• The function that you provide on the command line to codegen or fiaccel.

For example, the following code generates compilation errors:

%#codegen
function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

To fix the problem, write a top-level function that specifies a fixed number
of inputs and outputs. Then call inch_2_cm as an external function or local
function, as in this example:

%#codegen
function [cmL, cmW, cmH] = conv_2_metric(inL, inW, inH)
[cmL, cmW, cmH] = inch_2_cm(inL, inW, inH);

12-10

Variable Length Argument Lists for Code Generation

function varargout = inch_2_cm(varargin)
for i = 1:length(varargin)

varargout{i} = varargin{i} * 2.54;
end

Use curly braces {} to index into the argument list

For code generation, you can use curly braces {}, but not parentheses (),
to index into varargin and varargout arrays. For more information, see
“Supported Index Expressions” on page 12-3.

Verify that indices can be computed at compile time

If you use an expression to index into varargin or varargout, make sure that
the value of the expression can be computed at compile time. For examples,
see “Apply Operations to a Variable Number of Arguments” on page 12-4.

Do not write to varargin

Generated code treats varargin as a read-only variable. If you want to write
to input arguments, copy the values into a local variable.

12-11

12 Defining Functions for Code Generation

12-12

13

Calling Functions for Code
Generation

• “Resolution of Function Calls in MATLAB Generated Code” on page 13-2

• “Resolution of File Types on Code Generation Path” on page 13-6

• “Compilation Directive %#codegen” on page 13-8

• “Call Local Functions” on page 13-9

• “Call Supported Toolbox Functions” on page 13-10

• “Call MATLAB Functions” on page 13-11

13 Calling Functions for Code Generation

Resolution of Function Calls in MATLAB Generated Code
From a MATLAB function, you can call local functions, supported toolbox
functions, and other MATLAB functions. MATLAB resolves function names
for code generation as follows:

13-2

Resolution of Function Calls in MATLAB® Generated Code

��������	
��

�����	
�

�����
��
�������	
�
�����

�����	
�

�

������
�����

����	��	�
�����	
��

�����	
�

�

������
�����

�������	�������

������

�
�������	
�
������	��

��

��

��

���

��	�����
�
��
��

�������	
��

���

���

���

%�����!�
&�����

�����

 ����������
�

��

��

��

13-3

13 Calling Functions for Code Generation

Key Points About Resolving Function Calls
The diagram illustrates key points about how MATLAB resolves function
calls for code generation:

• Searches two paths, the code generation path and the MATLAB path

See “Compile Path Search Order” on page 13-4.

• Attempts to compile functions unless the code generation software
determines that it should not compile them or you explicitly declare them
to be extrinsic.

If a MATLAB function is not supported for code generation, you can declare
it to be extrinsic by using the construct coder.extrinsic, as described in
“Declaring MATLAB Functions as Extrinsic Functions” on page 13-12.
During simulation, the code generation software generates code for the
call to an extrinsic function, but does not generate the function’s internal
code. Therefore, simulation can run only on platforms where MATLAB
software is installed. During standalone code generation, MATLAB
attempts to determine whether the extrinsic function affects the output of
the function in which it is called — for example by returning mxArrays to
an output variable. Provided that the output does not change, MATLAB
proceeds with code generation, but excludes the extrinsic function from the
generated code. Otherwise, compilation errors occur.

The code generation software detects calls to many common visualization
functions, such as plot, disp, and figure. The software treats these
functions like extrinsic functions but you do not have to declare them
extrinsic using the coder.extrinsic function.

• Resolves file type based on precedence rules described in “Resolution of File
Types on Code Generation Path” on page 13-6

Compile Path Search Order
During code generation, function calls are resolved on two paths:

1 Code generation path

MATLAB searches this path first during code generation. The code
generation path contains the toolbox functions supported for code
generation.

13-4

Resolution of Function Calls in MATLAB® Generated Code

2 MATLAB path

If the function is not on the code generation path, MATLAB searches this
path.

MATLAB applies the same dispatcher rules when searching each path (see
“Function Precedence Order”).

When to Use the Code Generation Path
Use the code generation path to override a MATLAB function with a
customized version. A file on the code generation path shadows a file of the
same name on the MATLAB path.

13-5

13 Calling Functions for Code Generation

Resolution of File Types on Code Generation Path
MATLAB uses the following precedence rules for code generation:

13-6

Resolution of File Types on Code Generation Path

��!"�	���

���"�	���

#"�	���

�"�	�����
��!"�	��	�����

�	����
�$�

���

��

��

��

���

�"�	���

���

���

�����

��

&������
'(����

 �������
���
�

�����

13-7

13 Calling Functions for Code Generation

Compilation Directive %#codegen
Add the %#codegen directive (or pragma) to your function to indicate that you
intend to generate code for the MATLAB algorithm. Adding this directive
instructs the MATLAB code analyzer to help you diagnose and fix violations
that would result in errors during code generation.

13-8

Call Local Functions

Call Local Functions
Local functions are functions defined in the body of MATLAB function. They
work the same way for code generation as they do when executing your
algorithm in the MATLAB environment.

The following example illustrates how to define and call a local function mean:

function [mean, stdev] = stats(vals)
%#codegen

% Calculates a statistical mean and a standard
% deviation for the values in vals.

len = length(vals);
mean = avg(vals, len);
stdev = sqrt(sum(((vals-avg(vals,len)).^2))/len);
plot(vals,'-+');

function mean = avg(array,size)
mean = sum(array)/size;

13-9

13 Calling Functions for Code Generation

Call Supported Toolbox Functions
You can call toolbox functions directly if they are supported for code
generation. For a list of supported functions, see “Functions Supported for
C/C++ Code Generation — Alphabetical List” on page 4-2.

13-10

Call MATLAB® Functions

Call MATLAB Functions
The code generation software attempts to generate code for functions, even if
they are not supported for C code generation. The software detects calls to
many common visualization functions, such as plot, disp, and figure. The
software treats these functions like extrinsic functions but you do not have
to declare them extrinsic using coder.extrinsic. During simulation, the
code generation software generates code for these functions, but does not
generate their internal code. During standalone code generation, MATLAB
attempts to determine whether the visualization function affects the output of
the function in which it is called. Provided that the output does not change,
MATLAB proceeds with code generation, but excludes the visualization
function from the generated code. Otherwise, compilation errors occur.

For example, you might want to call plot to visualize your results in the
MATLAB environment. If you generate a MEX function from a function that
calls plot and then run the generated MEX function, the code generation
software dispatches calls to the plot function to MATLAB. If you generate a
library or executable, the generated code does not contain calls to the plot
function. The code generation report highlights calls from your MATLAB
code to extrinsic functions so that it is easy to determine which functions are
supported only in the MATLAB environment.

For unsupported functions other than common visualization functions, you
must declare the functions (like pause) to be extrinsic (see “Resolution
of Function Calls in MATLAB Generated Code” on page 13-2). Extrinsic
functions are not compiled, but instead executed in MATLAB during

13-11

13 Calling Functions for Code Generation

simulation (see “How MATLAB Resolves Extrinsic Functions During
Simulation” on page 13-16).

There are two ways to declare a function to be extrinsic:

• Use the coder.extrinsic construct in main functions or local functions
(see “Declaring MATLAB Functions as Extrinsic Functions” on page 13-12).

• Call the function indirectly using feval (see “Calling MATLAB Functions
Using feval” on page 13-16).

Declaring MATLAB Functions as Extrinsic Functions
To declare a MATLAB function to be extrinsic, add the coder.extrinsic
construct at the top of the main function or a local function:

coder.extrinsic('function_name_1', ... , 'function_name_n');

Declaring Extrinsic Functions
The following code declares the MATLAB patch function extrinsic in the
local function create_plot:

function c = pythagoras(a,b,color) %#codegen
% Calculates the hypotenuse of a right triangle
% and displays the triangle.

c = sqrt(a^2 + b^2);
create_plot(a, b, color);

function create_plot(a, b, color)
%Declare patch and axis as extrinsic

coder.extrinsic('patch');

x = [0;a;a];
y = [0;0;b];
patch(x, y, color);
axis('equal');

13-12

Call MATLAB® Functions

The code generation software detects that axis is not supported for code
generation and automatically treats it as an extrinsic function. The compiler
does not generate code for patch and axis, but instead dispatches them to
MATLAB for execution.

To test the function, follow these steps:

1 Convert pythagoras to a MEX function by executing this command at
the MATLAB prompt:

codegen -report pythagoras -args {1, 1, [.3 .3 .3]}

2 Click the link to the code generation report and then, in the report, view
the MATLAB code for create_plot.

The report highlights the patch and axis functions to indicate that they
are supported only within the MATLAB environment.

3 Run the MEX function by executing this command:

pythagoras_mex(3, 4, [1.0 0.0 0.0]);

MATLAB displays a plot of the right triangle as a red patch object:

13-13

13 Calling Functions for Code Generation

When to Use the coder.extrinsic Construct
Use the coder.extrinsic construct to:

• Call MATLAB functions that do not produce output — such as pause
— during simulation, without generating unnecessary code (see “How
MATLAB Resolves Extrinsic Functions During Simulation” on page 13-16).

• Make your code self-documenting and easier to debug. You can scan the
source code for coder.extrinsic statements to isolate calls to MATLAB
functions, which can potentially create and propagate mxArrays (see
“Working with mxArrays” on page 13-17).

• Save typing. With one coder.extrinsic statement, each subsequent
function call is extrinsic, as long as the call and the statement are in the
same scope (see “Scope of Extrinsic Function Declarations” on page 13-15).

13-14

Call MATLAB® Functions

• Declare the MATLAB function(s) extrinsic throughout the calling function
scope (see “Scope of Extrinsic Function Declarations” on page 13-15). To
narrow the scope, use feval (see “Calling MATLAB Functions Using feval”
on page 13-16).

Rules for Extrinsic Function Declarations
Observe the following rules when declaring functions extrinsic for code
generation:

• Declare the function extrinsic before you call it.

• Do not use the extrinsic declaration in conditional statements.

Scope of Extrinsic Function Declarations
The coder.extrinsic construct has function scope. For example, consider
the following code:

function y = foo %#codegen
coder.extrinsic('rat','min');
[N D] = rat(pi);
y = 0;
y = min(N, D);

In this example, rat and min as treated as extrinsic every time they are
called in the main function foo. There are two ways to narrow the scope of
an extrinsic declaration inside the main function:

• Declare the MATLAB function extrinsic in a local function, as in this
example:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = mymin(N, D);

function y = mymin(a,b)
coder.extrinsic('min');
y = min(a,b);

13-15

13 Calling Functions for Code Generation

Here, the function rat is extrinsic every time it is called inside the main
function foo, but the function min is extrinsic only when called inside the
local function mymin.

• Call the MATLAB function using feval, as described in “Calling MATLAB
Functions Using feval” on page 13-16.

Calling MATLAB Functions Using feval
The function feval is automatically interpreted as an extrinsic function
during code generation. Therefore, you can use feval to conveniently call
functions that you want to execute in the MATLAB environment, rather than
compiled to generated code.

Consider the following example:

function y = foo
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0;
y = feval('min', N, D);

Because feval is extrinsic, the statement feval('min', N, D) is evaluated
by MATLAB — not compiled — which has the same result as declaring the
function min extrinsic for just this one call. By contrast, the function rat is
extrinsic throughout the function foo.

How MATLAB Resolves Extrinsic Functions During
Simulation
MATLAB resolves calls to extrinsic functions — functions that do not support
code generation — as follows:

13-16

Call MATLAB® Functions

During simulation, MATLAB generates code for the call to an extrinsic
function, but does not generate the function’s internal code. Therefore, you
can run the simulation only on platforms where you install MATLAB software.

During code generation, MATLAB attempts to determine whether the
extrinsic function affects the output of the function in which it is called —
for example by returning mxArrays to an output variable (see “Working
with mxArrays” on page 13-17). Provided that the output does not change,
MATLAB proceeds with code generation, but excludes the extrinsic function
from the generated code. Otherwise, MATLAB issues a compiler error.

Working with mxArrays
The output of an extrinsic function is an mxArray — also called a MATLAB
array. The only valid operations for mxArrays are:

13-17

13 Calling Functions for Code Generation

• Storing mxArrays in variables

• Passing mxArrays to functions and returning them from functions

• Converting mxArrays to known types at run time

To use mxArrays returned by extrinsic functions in other operations, you must
first convert them to known types, as described in “Converting mxArrays to
Known Types” on page 13-18.

Converting mxArrays to Known Types
To convert an mxArray to a known type, assign the mxArray to a variable
whose type is defined. At run time, the mxArray is converted to the type of the
variable assigned to it. However, if the data in the mxArray is not consistent
with the type of the variable, you get a run-time error.

For example, consider this code:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = min(N, D);

Here, the top-level function foo calls the extrinsic MATLAB function rat,
which returns two mxArrays representing the numerator N and denominator
D of the rational fraction approximation of pi. Although you can pass these
mxArrays to another MATLAB function — in this case, min — you cannot
assign the mxArray returned by min to the output y.

If you run this function foo in a MATLAB Function block in a Simulink
model, the code generates the following error during simulation:

Function output 'y' cannot be of MATLAB type.

To fix this problem, define y to be the type and size of the value that you
expect min to return — in this case, a scalar double — as follows:

function y = foo %#codegen
coder.extrinsic('rat');
[N D] = rat(pi);
y = 0; % Define y as a scalar of type double

13-18

Call MATLAB® Functions

y = min(N,D);

Restrictions on Extrinsic Functions for Code
Generation
The full MATLAB run-time environment is not supported during code
generation. Therefore, the following restrictions apply when calling MATLAB
functions extrinsically:

• MATLAB functions that inspect the caller, or read or write to the caller’s
workspace do not work during code generation. Such functions include:

- dbstack

- evalin

- assignin

- save

• The MATLAB debugger cannot inspect variables defined in extrinsic
functions.

• Functions in generated code may produce unpredictable results if your
extrinsic function performs the following actions at run time:

- Change folders

- Change the MATLAB path

- Delete or add MATLAB files

- Change warning states

- Change MATLAB preferences

- Change Simulink parameters

Limit on Function Arguments
You can call functions with up to 64 inputs and 64 outputs.

13-19

13 Calling Functions for Code Generation

13-20

14

Fixed-Point Conversion

• “Convert MATLAB Code to Fixed-Point C Code” on page 14-2

• “Propose Fixed-Point Data Types Based on Simulation Ranges” on page
14-3

• “Propose Fixed-Point Data Types Based on Derived Ranges” on page 14-21

• “Specify Type Proposal Options” on page 14-36

• “Log Data for Histogram” on page 14-39

• “View and Modify Variable Information” on page 14-42

• “Build Instrumented MEX Function” on page 14-46

• “Propose Fixed-Point Data Types” on page 14-47

• “Apply Fixed-Point Data Types” on page 14-57

• “Modify Data Type Proposal Settings” on page 14-63

• “Modify Instrumentation Report Settings” on page 14-67

• “Automated Fixed-Point Conversion” on page 14-68

• “Instrumented MEX Functions” on page 14-81

• “Convert Floating-Point MATLAB Code to Fixed-Point C Code Using
codegen” on page 14-84

14 Fixed-Point Conversion

Convert MATLAB Code to Fixed-Point C Code
1 Create a MATLAB Coder project, add the entry-point function from which
you want to generate code, and then define entry-point input types.

2 On the project Overview tab Fixed-Point Conversion pane, select
Convert to fixed-point at build time. Then on the project Fixed-Point
Conversion pane, click Define and validate fixed-point types to open
the Fixed-Point Conversion tool.

3 Compute ranges by either simulating using a test file, using static analysis
to derive ranges from design ranges, or both.

4 Validate the proposed data types. See “Validating Types” on page 14-79.

5 Test numerics. See “Testing Numerics” on page 14-79.

6 In the MATLAB Coder project, select the Build tab, set the Output type
to build a static or dynamic library, or executable, and then click Build.

MATLAB Coder generates fixed-point C code for your entry-point MATLAB
function.

For more information, see “Propose Fixed-Point Data Types Based on
Simulation Ranges” on page 14-3 and “Propose Fixed-Point Data Types Based
on Derived Ranges” on page 14-21.

14-2

Propose Fixed-Point Data Types Based on Simulation Ranges

Propose Fixed-Point Data Types Based on Simulation
Ranges

This example shows how to propose fixed-point data types based on simulation
range data.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, you must set up the C compiler. See “Setting Up
the C/C++ Compiler”.

For instructions on installing MathWorks products, see the MATLAB
installation documentation. If you have installed MATLAB and want to check
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver .

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the fun_with_matlab.m and fun_with_matlab_test.m files to your
local working folder.

14-3

14 Fixed-Point Conversion

Type Name Description

Function code fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

The fun_with_matlab Function

function y = fun_with_matlab(x) %#codegen
persistent z
if isempty(z)

z = zeros(2,1);
end
% [b,a] = butter(2, 0.25)
b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
a = [1, -0.942809041582063, 0.3333333333333333];

y = zeros(size(x));
for i=1:length(x)

y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);

end
end

The fun_with_matlab_test Script

The test script runs the fun_with_matlab function with three input signals:
chirp, step, and impulse to cover the full intended operating range of the
system. The script then plots the outputs.

% fun_with_matlab_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second

14-4

Propose Fixed-Point Data Types Based on Simulation Ranges

x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1)=1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i=1:size(x,1)

y(i,:) = fun_with_matlab(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'};
clf
for i=1:size(x,1)

subplot(size(x,1),1,i);
plot(t,x(i,:),t,y(i,:));
title(titles{i})
legend('Input','Output');

end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.');

Check Code Generation Readiness

In the current working folder, right-click the fun_with_matlab.m function.
From the context menu, select Check Code Generation Readiness.

The code generation readiness tool screens the code for features and functions
that are not supported for code generation. The tool reports that the
fun_with_matlab.m function is already suitable for code generation.

14-5

14 Fixed-Point Conversion

If your entry-point function is not suitable for code generation, the tool
provides a report that lists the source files that contain unsupported features
and functions. The report also provides an indication of how much work
you must do to make the MATLAB code ready for code generation. Before
proposing data types, you must fix these issues. For more information, see
“MATLAB Code Analysis”.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this example.

2 On the MATLAB Apps tab, select MATLAB Coder and
then, in the MATLAB Coder Project dialog box, set Name to
fun_with_matlab_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_matlab_project.prj

By default, the project opens in the MATLAB workspace.

14-6

Propose Fixed-Point Data Types Based on Simulation Ranges

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_matlab.m and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Input Types dialog box, add fun_with_matlab_test
as a test file and then click Run.

The test file runs and displays the outputs of the filter for each of the input
signals.

14-7

14 Fixed-Point Conversion

MATLAB Coder determines the input types from the test file and then
displays them.

14-8

Propose Fixed-Point Data Types Based on Simulation Ranges

3 In the Autodefine Input Types dialog box, click Use These Types.

MATLAB Coder sets the type of x to double(1x256).

Fixed-Point Conversion

1 On the project Overview tab Fixed-Point Conversion pane, select
Convert to fixed-point at build time.

14-9

14 Fixed-Point Conversion

The project indicates that you must first define the fixed-point data types.

14-10

Propose Fixed-Point Data Types Based on Simulation Ranges

2 In the Fixed-Point Conversion pane, click Define and validate
fixed-point types.

The Fixed-Point Conversion window opens and the tool generates an
instrumented MEX function for your entry-point MATLAB function. After
generating the MEX function, the tool displays compiled information
— type, size, and complexity — for variables in your code. For more
information, see “View and Modify Variable Information” on page 14-42.

14-11

14 Fixed-Point Conversion

If the MEX function generation fails, the tool provides error message links
to help you navigate to the code that caused the build issues. If your
code contains functions that are not supported for fixed-point conversion,
the tool displays these on the Function Replacements tab. For more
information, see “Running a Simulation” on page 14-74.

3 Click Run Simulation and verify that the fun_with_matlab_test file is
selected as a test file to run. You can add test files and select to run more
than one test file during the simulation. If you run multiple test files, the

14-12

Propose Fixed-Point Data Types Based on Simulation Ranges

conversion tool merges the simulation results. To clear results, right-click
the Variables tab and select Reset entire table.

4 Click Run Simulation and select Log data for histogram.

By default, the Show code coverage option is selected. This option
provides code coverage information that helps you verify that your test file
is testing your algorithm over the intended operating range.

5 Click the Run Simulation button.

The simulation runs and the conversion tool displays a color-coded code
coverage bar to the left of the MATLAB code. Review this information to
verify that the test file is testing the algorithm adequately. Here, the dark
green line to the left of the code indicates that the code is run every time
the algorithm is executed. The orange bar indicates that the code next to
it is executed only once. In this example, this is the expected behavior
because the code is initializing a persistent variable. If your test file is not
covering all your code, update the test or add more test files. For more
information, see “Code Coverage” on page 14-70.

14-13

14 Fixed-Point Conversion

If a value has ... next to it, the value is rounded. Place your cursor over
the ... to view the actual value.

The tool displays simulation minimum and maximum ranges on the
Variables tab. Using the simulation range data, the software proposes
fixed-point types for each variable based on the default type proposal
settings, and displays them in the Proposed Type column. The Validate
Types option is now enabled.

14-14

Propose Fixed-Point Data Types Based on Simulation Ranges

6 Examine the proposed types and verify that they cover the full simulation
range. To view logged histogram data for a variable, click its Proposed
Type field.

To modify the proposed data types, either enter the required type into the
ProposedType field or use the histogram controls. For more information
about the histogram, see “Histogram” on page 14-77.

7 To validate the build using the proposed types, click Validate Types.

14-15

14 Fixed-Point Conversion

The software validates the proposed types, displays a Validation
succeeded message, and enables the Test Numerics option. The project
indicates that you have validated the fixed-point data types.

If the errors or warnings occur during validation, they are displayed on the
Type Validation Output tab. For more information, see “Validating
Types” on page 14-79.

8 Click Test Numerics, select Log inputs and outputs for comparison
plots, and then click the Test Numerics button.

The tool runs the test file that you used to define input types to test the
fixed-point MATLAB code. Optionally, you can add test files and select to

14-16

Propose Fixed-Point Data Types Based on Simulation Ranges

run more than one test file to test numerics. The software runs both a
floating-point and a fixed-point simulation and then calculates the errors
for the output variable y. Because you selected to log inputs and outputs
for comparison plots, the tool generates an additional plot for each scalar
output.

The maximum error is less than 0.03%. For the purpose of this example,
this margin of error is acceptable, so you are ready to generate fixed-point
C code.

If the difference is not acceptable, modify the fixed-point data types or
your original algorithm. For more information, see “Testing Numerics” on
page 14-79.

9 Return to the MATLAB Coder project.

Generate Fixed-Point C Code

1 In the MATLAB Coder project, verify that the Fixed-Point Conversion
pane displays Ready for conversion, and then select the Build tab.

2 On this tab, set the Output type to C/C++ Static library.

The default output file name is fun_with_matlab.

3 Click Build to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C
static library and supporting files in the default subfolder,
codegen/lib/fun_with_matlab_fixpt.

4 To view the generated code, click View report.

The code generation report opens and displays the generated code for
fun_with_matlab_fixpt.c. In the generated C code, the variables are not
assigned real types, they are assigned fixed-point data types.

In this case, the generated code is not optimized; it contains a number of
utility functions, such as MultiWordAdd. MATLAB Coder generates these
utility functions because the results of adding or multiplying inputs results
in a sum or product that exceed 32 bits. You can optimize the generated
code by modifying the word length and fimath settings.

14-17

14 Fixed-Point Conversion

Optimize Fixed-Point C Code

1 In the Fixed-Point Conversion tool, click Advanced to display the
advanced type proposal settings.

The fimath Product mode and Sum mode settings are both set to
FullPrecision. In FullPrecision mode, the product word length grows
to the sum of the word lengths of the operands.

2 Set the fimath Product mode and Sum mode to SpecifyPrecision.

Selecting SpecifyPrecision enables the Product word length, Product
fraction length, Sum word length, and Sum fraction length settings.
The product word length and sum word length are both set to 32, which
limits these word lengths to 32 in the generated code.

3 Click Validate Types.

Because you have changed type proposal settings, you must validate the
types again.

The software validates the proposed types, displays a Validation
succeeded message.

4 Click the Test Numerics button.

The maximum error is still less than 0.03%, so you are ready to generate
fixed-point C code.

5 Generate code again and view the generated C code for
fun_with_matlab_fixpt.c. This time, because the word lengths in the
generated code do not exceed 32 bits, the generated code does not contain
utility functions.

void fun_with_matlab_fixpt(const short x[256], short y[256])
{

int i0;
int i;
int i1;
short b_y;
int i2;
int i3;

14-18

Propose Fixed-Point Data Types Based on Simulation Ranges

/* [b,a] = butter(2, 0.25) */
for (i0 = 0; i0 < 256; i0++) {

y[i0] = 0;
}

for (i = 0; i < 256; i++) {
i0 = 25593 * x[i];
if (i0 >= 0) {

i1 = (int)((unsigned int)i0 >> 2);
} else {

i1 = ~(int)((unsigned int)~i0 >> 2);
}

i0 = i1 + (z[0] << 15);
if (i0 >= 0) {

b_y = (short)((unsigned int)i0 >> 16);
} else {

b_y = (short)~(int)((unsigned int)~i0 >> 16);
}

i0 = 25593 * x[i];
if (i0 >= 0) {

i2 = (int)((unsigned int)i0 >> 1);
} else {

i2 = ~(int)((unsigned int)~i0 >> 1);
}

i0 = (i2 + (z[1] << 15)) - (-30894 * b_y << 1);
if (i0 >= 0) {

z[0] = (short)((unsigned int)i0 >> 15);
} else {

z[0] = (short)~(int)((unsigned int)~i0 >> 15);
}

i0 = 25593 * x[i];
if (i0 >= 0) {

i3 = (int)((unsigned int)i0 >> 2);
} else {

i3 = ~(int)((unsigned int)~i0 >> 2);

14-19

14 Fixed-Point Conversion

}

i0 = i3 - 21844 * b_y;
if (i0 >= 0) {

z[1] = (short)((unsigned int)i0 >> 15);
} else {

z[1] = (short)~(int)((unsigned int)~i0 >> 15);
}

y[i] = b_y;
}

}

14-20

Propose Fixed-Point Data Types Based on Derived Ranges

Propose Fixed-Point Data Types Based on Derived Ranges
This example shows how to propose fixed-point data types based on static
ranges that you specify. The advantage of proposing data types based on
derived ranges is that you do not have to provide test files that exercise your
algorithm over its full operating range. Running such test files often takes a
very long time so you can save time by deriving ranges instead.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, you must set up the C compiler. See “Setting Up
the C/C++ Compiler”.

For instructions on installing MathWorks products, see the MATLAB
installation documentation. If you have installed MATLAB and want to check
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver .

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\dti.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the dti.m and dti_test.m files to your local working folder.

14-21

14 Fixed-Point Conversion

Type Name Description

Function code dti.m Entry-point MATLAB
function

Test file dti_test.m MATLAB script that tests
dti.m

The dti Function

The dti function implements a Discrete Time Integrator in MATLAB.

function [y, clip_status] = dti(u_in) %#codegen
% Discrete Time Integrator in MATLAB
%
% Forward Euler method, also known as Forward Rectangular, or left-hand
% approximation. The resulting expression for the output of the block at
% step 'n' is y(n) = y(n-1) + K * u(n-1)
%
init_val = 1;
gain_val = 1;
limit_upper = 500;
limit_lower = -500;

% variable to hold state between consecutive calls to this block
persistent u_state;
if isempty(u_state)

u_state = init_val+1;
end

% Compute Output
if (u_state > limit_upper)

y = limit_upper;
clip_status = -2;

elseif (u_state >= limit_upper)
y = limit_upper;
clip_status = -1;

elseif (u_state < limit_lower)
y = limit_lower;

clip_status = 2;
elseif (u_state <= limit_lower)

14-22

Propose Fixed-Point Data Types Based on Derived Ranges

y = limit_lower;
clip_status = 1;

else
y = u_state;
clip_status = 0;

end

% Update State
tprod = gain_val * u_in;
u_state = y + tprod;

function b = subFunction(a)
b = a*a;

The dti_test Function

The test script runs the dti function with a sine wave input. The script then
plots the input and output signals.

% dti_test
% cleanup
clear dti

% input signal
x_in = sin(2.*pi.*(0:0.001:2)).';

pause(10);

len = length(x_in);
y_out = zeros(1,len);
is_clipped_out = zeros(1,len);

for ii=1:len
data = x_in(ii);
% call to the dti function
init_val = 0;
gain_val = 1;
upper_limit = 500;
lower_limit = -500;

14-23

14 Fixed-Point Conversion

% call to the design that does DTI
[y_out(ii), is_clipped_out(ii)] = dti(data);

end

figure('Name', [mfilename, '_plot']);
subplot(2,1,1);
plot(1:len,x_in);
xlabel('Time')
ylabel('Amplitude')
title('Input Signal (Sin)')

subplot(2,1,2); plot(1:len,y_out);
xlabel('Time')
ylabel('Amplitude')
title('Output Signal (DTI)')

disp('Test complete.');

Check Code Generation Readiness

In the current working folder, right-click the dti.m function. From the context
menu, select Check Code Generation Readiness.

The code generation readiness tool screens the code for features and functions
that are not supported for code generation. The tool reports that the dti.m
function is already suitable for code generation.

14-24

Propose Fixed-Point Data Types Based on Derived Ranges

If your entry-point function is not suitable for code generation, the tool
provides a report that lists the source files that contain unsupported features
and functions. The report also provides an indication of how much work
you must do to make the MATLAB code ready for code generation. Before
proposing data types, you must fix these issues. For more information, see
“MATLAB Code Analysis”.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this example.

2 On the MATLAB Apps tab, select MATLAB Coder and then, in the
MATLAB Coder Project dialog box, set Name to dti.prj.

Alternatively, at the MATLAB command line, enter

coder -new dti.prj

By default, the project opens in the MATLAB workspace.

3 On the project Overview tab, click the Add files link. Browse to the file
dti.m and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

14-25

14 Fixed-Point Conversion

2 In the Autodefine Input Types dialog box, add dti_test as a test file and
then click Run.

The test file runs and displays the outputs of the filter for each of the input
signals.

14-26

Propose Fixed-Point Data Types Based on Derived Ranges

MATLAB Coder determines the input types from the test file and then
displays them.

3 In the Autodefine Input Types dialog box, click Use These Types.

MATLAB Coder sets the type of x to double(1x1).

Fixed-Point Conversion

1 On the project Overview tab Fixed-Point Conversion pane, select
Convert to fixed-point at build time.

The project indicates that you must first define the fixed-point data types.

14-27

14 Fixed-Point Conversion

2 In the Fixed-Point Conversion pane, click Define and validate
fixed-point types.

The Fixed-Point Conversion window opens and the tool generates an
instrumented MEX function for your entry-point MATLAB function. After
generating the MEX function, the tool displays compiled information
— type, size, and complexity — for variables in your code. For more
information, see “View and Modify Variable Information” on page 14-42.

14-28

Propose Fixed-Point Data Types Based on Derived Ranges

If the MEX function generation fails, the tool provides error message links
to help you navigate to the code that caused the build issues. If your
code contains functions that are not supported for fixed-point conversion,
the tool displays these on the Function Replacements tab. For more
information, see “Running a Simulation” on page 14-74.

3 In the Fixed-Point Conversion window, on the Variables tab, for input
u_in, select Static Min and set it to -1. Then set Static Max to 1.

14-29

14 Fixed-Point Conversion

To compute derived range information, at a minimum you must specify
static minimum and maximum values for all input variables. Alternatively,
if you know what data type your hardware target uses, set the proposed
data type to match this type.

4 Click the Compute Derived Ranges button.

Range analysis computes the derived ranges and displays them in the
Variables tab. Using these derived ranges, the analysis proposes
fixed-point types for each variable based on the default type proposal
settings, and displays them in the Proposed Type column. The Validate
Types option is now enabled.

In the dti function, the clip_status output has a minimum value of -2
and a maximum of 2.

% Compute Output
if (u_state > limit_upper)

y = limit_upper;
clip_status = -2;

elseif (u_state >= limit_upper)
y = limit_upper;
clip_status = -1;

elseif (u_state < limit_lower)
y = limit_lower;

clip_status = 2;
elseif (u_state <= limit_lower)
y = limit_lower;

clip_status = 1;
else

y = u_state;
clip_status = 0;

end

When you derive ranges, the Fixed-Point Conversion tool analyses
the function and computes these minimum and maximum values for
clip_status.

14-30

Propose Fixed-Point Data Types Based on Derived Ranges

The tool provides a Quick derived range analysis option and the option
to specify a timeout in case the analysis takes a very long time. For more
information, see “Computing Derived Ranges” on page 14-75

5 To validate the build using the proposed types, click Validate Types.

The software validates the proposed types, displays a Validation
succeeded message, and enables the Test Numerics option. The project
indicates that you have validated the fixed-point data types.

14-31

14 Fixed-Point Conversion

If the errors or warnings occur during validation, they are displayed on the
Type Validation Output tab. For more information, see “Validating
Types” on page 14-79.

6 Run the test file to test the fixed-point MATLAB code. Click Test
Numerics and select Log inputs and outputs for comparison plots,
and then click the Test Numerics button.

The tool runs the test file that you used to define input types to test the
fixed-point MATLAB code. Optionally, you can add test files and select to
run more than one test file to test numerics. The software runs both a
floating-point and a fixed-point simulation and then calculates the errors
for the output variables y and clip_status. Because you selected to log

14-32

Propose Fixed-Point Data Types Based on Derived Ranges

inputs and outputs for comparison plots, the tool generates an additional
plot for each scalar output.

Plots are displayed for the:

• Floating-point input and output signals.

• Fixed-point input and output signals.

• Outputs y and clip_status showing the difference between the
floating-point and the fixed-point runs.

14-33

14 Fixed-Point Conversion

The maximum difference between the floating-point and fixed-point runs
for y is less than 5%. For the purpose of this example, this margin of error
is acceptable, so you are ready to generate fixed-point C code.

14-34

Propose Fixed-Point Data Types Based on Derived Ranges

If the difference is not acceptable, modify the fixed-point data types or
your original algorithm. For more information, see “Testing Numerics” on
page 14-79.

Generate Fixed-Point C Code

1 In the MATLAB Coder project, select the Build tab.

2 On this tab, set the Output type to C/C++ Static library.

The default output file name is dti.

3 Click Build to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C static library and
supporting files in the default subfolder, codegen/lib/dti_FixPt.

4 To view the generated code, click View report.

The code generation report opens and displays the generated code for
dti_FixPt.c. In the generated C code, variables are assigned fixed-point
data types.

14-35

14 Fixed-Point Conversion

Specify Type Proposal Options

You specify whether to propose fraction lengths or word lengths in the
Fixed-Point Conversion window Type Proposal options. By default, the
software proposes fraction lengths for a default word length of 16.

To customize fixed-point type proposals, use the Advanced settings.

Advanced Setting Values Description

ignore simulation
ranges

Propose data types based only on
derived ranges

ignore derived
ranges

Propose data types based only on
simulation ranges

When proposing types

use all collected
data (default)

Proposed data types based on both
simulation and derived ranges

No Do not use integer scaling
for variables that were whole
numbers during simulation.

Optimize whole numbers

Yes (default) Use integer scaling for variables
that were whole numbers during
simulation.

Automatic
(default)

Proposes signed and unsigned
data types depending on the range
information for each variable.

Signed Propose signed data types.

Signedness

Unsigned Propose unsigned data types.

14-36

Specify Type Proposal Options

Advanced Setting Values Description

Safety margin for sim min/max (%) 0 (default) Specify safety factor for
simulation minimum and
maximum values.

The simulation minimum and
maximum values are adjusted
by the percentage designated by
this parameter, allowing you to
specify a range different from
that obtained from the simulation
run. For example, a value of 55
specifies that you want a range at
least 55 percent larger. A value of
-15 specifies that a range up to 15
percent smaller is acceptable.

Generated fixed-point file name suffix _fixpt (default) Specify the suffix to add to
the generated fixed-point file
names. For example, by default,
if you generate a static library
for a project named test, the
generated files are in the subfolder
codegen\lib\test_fixpt. The
generated static library is named
test.lib, but the generated
C code files use the suffix, for
example, test_fixpt.c.

No (default)Transform for-loop index variables

Yes

14-37

14 Fixed-Point Conversion

Advanced Setting Values Description

Ceiling

Convergent

Floor (default)

Nearest

Round

Rounding method

Zero

SaturateOverflow action

Wrap (default)

FullPrecision
(default)

KeepLSB

KeepMSB

Product mode

SpecifyPrecision

FullPrecision
(default)

KeepLSB

KeepMSB

fimath

Sum mode

SpecifyPrecision

Specify the fimath properties for
the generated fixed-point data
types.

The default fixed-point math
properties use the Floor rounding
and Wrap overflow because they
are the default actions in C.
These settings generate the most
efficient code but might cause
problems with overflow.

After code generation, if required,
modify these settings to optimize
the generated code, or example,
avoid overflow or eliminate bias,
and then rerun the verification.

14-38

Log Data for Histogram

Log Data for Histogram
To log data for histograms:

1 In the Fixed-Point Conversion window, click Run Simulation and select
Log data for histogram, and then click the Run Simulation button.

The simulation runs and the simulation minimum and maximum ranges
are displayed on the Variables tab. Using the simulation range data, the
software proposes fixed-point types for each variable based on the default
type proposal settings, and displays them in the Proposed Type column.

2 To view a histogram for a variable, click the variable’s Proposed Type
field.

14-39

14 Fixed-Point Conversion

3 You can view the effect of changing the proposed data types by:

• Selecting and dragging the white bounding box in the histogram window.
This action does not change the word length of the proposed data type,
but modifies the position of the binary point within the word so that the
fraction length of the proposed data type changes.

• Selecting and dragging the left edge of the bounding box to increase
or decrease the word length. This action does not change the fraction
length or the position of the binary point.

14-40

Log Data for Histogram

• Selecting and dragging the right edge to increase or decrease the fraction
length of the proposed data type. This action does not change the
position of the binary point. The word length changes to accommodate
the fraction length.

• Selecting or clearing Signed. Clear Signed to ignore negative values.

Before committing changes, you can revert to the types proposed by the

automatic conversion by clicking .

14-41

14 Fixed-Point Conversion

View and Modify Variable Information

View Variable Information
To view information about the variables in the MATLAB function selected
in the Navigation pane, use the Variables tab or place your cursor over a
variable in the code window. For more information, see “Viewing Variables”
on page 14-76.

You can view the variable information:

• Variable

Variable name. Variables are classified and sorted as inputs, outputs,
persistent, or local variables.

• Type

The original size, type, and complexity of each variable.

• Sim Min

The minimum value assigned to the variable during simulation.

• Sim Max

The maximum value assigned to the variable during simulation.

To search for variables in the MATLAB code pane and on the Variables tab,
use Ctrl+F. The tool highlights occurrences in the code and displays only the
variable with the specified name on the Variables tab.

Modify Variable Information
If you modify variable information, the tool highlights the values in bold.
You can modify the following fields:

• Static Min

You can enter a value for Static Min into the field or promote Sim Min
information. See “Promote Sim Min and Sim Max Values” on page 14-45.

Editing this field does not trigger static range analysis, but the tool uses
the edited values in subsequent analyses.

14-42

View and Modify Variable Information

• Static Max

You can enter a value for Static Max into the field or promote Sim Max
information. See “Promote Sim Min and Sim Max Values” on page 14-45.

Editing this field does not trigger static range analysis, but the tool uses
the edited values in subsequent analyses.

• Whole Number

The Fixed-Point Conversion tool uses simulation data to determine whether
the values assigned to a variable during simulation were always integers.
You can manually override this field.

Editing this field does not trigger static range analysis, but the tool uses
the edited value in subsequent analyses.

• Proposed Type

You can modify the signedness, word length, and fraction length settings
individually by:

- On the Variables tab, by modifying the value in the ProposedType
field.

- In the code window, by selecting a variable and then modifying the
ProposedType field.

14-43

14 Fixed-Point Conversion

If you selected to log data for a histogram, the histogram dynamically
updates to reflect the modifications to the proposed type. You can also
modify the proposed type in the histogram, see “Histogram” on page 14-77.

Revert Changes
• To clear results and revert edited values, right-click the Variables tab and
select Reset entire table.

• To revert the type of a selected variable to the type computed by the tool,
right-click the field and select Undo changes.

• To revert changes to variables, right-click the field and select Undo
changes for all variables.

• To clear a static range value, right-click an edited field and select Clear
static range.

14-44

View and Modify Variable Information

• To clear manually-entered static range values, right-click anywhere on the
Variables tab and select Clear all manually entered static ranges.

Promote Sim Min and Sim Max Values
The Fixed-Point Conversion tool allows you to promote simulation minimum
and maximum values to static minimum and maximum values. This
capability is useful if you have not specified static ranges and you have
simulated the model with inputs that cover the full intended operating range.

To copy:

• A simulation range for a selected variable, select a variable, right-click
and then select Copy sim range.

• Simulation ranges for top-level inputs, right-click the Static Min or Static
Max column and then select Copy sim ranges for all top-level
inputs.

• Simulation ranges for persistent variables, right-click the Static Min
or Static Max column and then select Copy sim ranges for all
persistent inputs.

14-45

14 Fixed-Point Conversion

Build Instrumented MEX Function

Note This capability is not compatible with automatic fixed-point conversion.
If you select Convert to fixed point at build time, you cannot build
instrumented MEX functions.

1 In the project, click the Build tab.

2 On the Build tab, set the Output type to Instrumented MEX Function.

3 Click the Build button.

The Build progress dialog box opens. When the build is complete, MATLAB
Coder generates an instrumented MEX function in the current folder. It also
provides a link to the report on the Show Instrumentation Results pane.
In this report, you can view the types of variables in your MATLAB code.

After you run the instrumented MEX function, the instrumentation report
provides fixed-point data type proposals based on the simulation range data.
You can use this information to convert your MATLAB code to fixed point by
hand. For more information, see “Propose Fixed-Point Data Types” on page
14-47

14-46

Propose Fixed-Point Data Types

Propose Fixed-Point Data Types
This example shows how to propose fixed-point data types using an
instrumented MEX function.

This capability is not compatible with automatic fixed-point conversion.
If you select Convert to fixed point at build time, you cannot build
instrumented MEX functions.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, you must set up the C compiler. See “Setting Up
the C/C++ Compiler”.

For instructions on installing MathWorks products, see the MATLAB
installation documentation. If you have installed MATLAB and want to check
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver .

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

14-47

14 Fixed-Point Conversion

3 Copy the fun_with_matlab.m and fun_with_matlab_test.m files to your
local working folder.

Type Name Description

Function code fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

The fun_with_matlab Function

function y = fun_with_matlab(x) %#codegen
persistent z
if isempty(z)

z = zeros(2,1);
end
% [b,a] = butter(2, 0.25)
b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
a = [1, -0.942809041582063, 0.3333333333333333];

y = zeros(size(x));
for i=1:length(x)

y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);

end
end

Check Code Generation Readiness

In the current working folder, right-click the fun_with_matlab.m function.
From the context menu, select Check Code Generation Readiness.

The code generation readiness tool screens the code for features and functions
that are not supported for code generation. The tool reports that the
fun_with_matlab.m function is already suitable for code generation.

14-48

Propose Fixed-Point Data Types

If your entry-point function is not suitable for code generation, the tool
provides a report that lists the source files that contain unsupported features
and functions. The report also provides an indication of how much work
you must do to make the MATLAB code ready for code generation. Before
proposing data types, you must fix these issues. For more information, see
“MATLAB Code Analysis”.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this tutorial.

2 On the MATLAB Apps tab, select MATLAB Coder and then,
in the MATLAB Coder Project dialog box, set Name to
fun_with_matlab_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_matlab_project.prj

By default, the project opens in the MATLAB workspace.

14-49

14 Fixed-Point Conversion

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_matlab.m and then click OK to add the file to the project.

About the fun_with_matlab_test Script

The test script runs the fun_with_matlab function with three input signals:
chirp, step, and impulse. The script then plots the results.

Contents of fun_with_matlab_test

% fun_with_matlab_test
%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second

14-50

Propose Fixed-Point Data Types

f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1)=1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i=1:size(x,1)

y(i,:) = fun_with_matlab(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'};
clf
for i=1:size(x,1)

subplot(size(x,1),1,i);
plot(t,x(i,:),t,y(i,:));
title(titles{i})
legend('Input','Output');

end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.');

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Input Types dialog box, add fun_with_matlab_test
as a test file and then click Run.

The test file runs and displays the outputs of the filter for each of the input
signals.

14-51

14 Fixed-Point Conversion

MATLAB Coder determines the input types from the test file and then
displays them in the Autodefine Input Types dialog box.

3 In this dialog box, click Use These Types.

MATLAB Coder sets the type of x to double(1x256).

14-52

Propose Fixed-Point Data Types

Build Instrumented MEX Function

1 In the project, click the Build tab.

2 On the Build tab, set the Output type to Instrumented MEX Function.

3 Click the Build button.

The Build progress dialog box opens. When the build is complete, MATLAB
Coder generates an instrumented MEX function fun_with_matlab_mex
in the current folder. It also provides a link to the report on the Show
Instrumentation Results pane. In this report, you can view the types of
variables in your MATLAB code.

View Data Type Proposal Settings

1 On the Show Instrumentation Results pane, click the Data type
proposal and report settings link.

14-53

14 Fixed-Point Conversion

This example uses the default data type proposal settings which propose
fraction lengths for the specified word lengths. Because the MATLAB code
is floating-point, the word length is specified by the Default data type of
all floating-point expressions field. You can specify the numerictype
signedness, word length and fraction length. Specifying [] for signedness
instructs MATLAB Coder to choose the signedness based on simulation
values. The default word length is 16. The default fraction length is 12.

For more information, see “Modify Data Type Proposal Settings” on page
14-63.

2 Close the dialog box.

Run Simulation

14-54

Propose Fixed-Point Data Types

1 On the Run Simulation pane, verify that the test file is set to
fun_with_matlab_test and that Redirect entry-point calls to MEX
function is selected. That way, each call to fun_with_matlab is replaced
with a call to the instrumented MEX function fun_with_matlab_mex.

2 On the Run Simulation pane, click Run.

The fun_with_matlab_test file runs and calls fun_with_matlab_mex. The
outputs of the filters are displayed as before.

View Code Generation Report

1 On the Show Instrumentation Results pane, click View Report.

2 In the Code Generation Report, click the Variables tab.

The report displays the simulation minimum and maximum values and the
proposed data types.

14-55

14 Fixed-Point Conversion

MATLAB Coder proposes data types with word length of 16 and fraction
length optimized to avoid overflows.

Next Steps

To learn how to apply the proposed data types to your entry-point MATLAB
function and verify that the fixed-point version of your algorithm is
functionally equivalent to your original MATLAB algorithm, see “Apply
Fixed-Point Data Types” on page 14-57.

14-56

Apply Fixed-Point Data Types

Apply Fixed-Point Data Types
This example shows how to write a fixed-point version of your entry-point
function using the data types proposed in “Propose Fixed-Point Data Types”
on page 14-47.

This capability is not compatible with automatic fixed-point conversion.
If you select Convert to fixed point at build time, you cannot build
instrumented MEX functions.

You will learn how to:

• Use the proposed data types to create a fixed-point version of your
entry-point function.

• Update your test file to call the fixed-point entry-point function.

• Verify that the fixed-point function is functionally equivalent to the original
MATLAB algorithm.

Prerequisites

To complete this example, you must install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

• C compiler

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, you must set up the C compiler. See “Setting Up
the C/C++ Compiler”.

For instructions on installing MathWorks products, see the MATLAB
installation documentation. If you have installed MATLAB and want to check
which other MathWorks products are installed, in the MATLAB Command
Window, enter ver.

14-57

14 Fixed-Point Conversion

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

2 Change to the docroot\toolbox\coder\examples folder. At the MATLAB
command line, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the following files to your local working folder.

Type Name Description

Function
code

fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

Function
code

fun_with_fi.m Entry-point MATLAB
function — fixed-point
version of fun_with_matlab
that uses data types
proposed in “Propose
Fixed-Point Data Types”
on page 14-47

Test file fun_with_fi_test.m MATLAB script that runs
both fun_with_matlab and
fun_with_fi and compares
the results

The fun_with_fi Function

The fun_with_fi is a fixed-point version of the fun_with_matlab function
that uses the data types proposed in “Propose Fixed-Point Data Types” on
page 14-47.

14-58

Apply Fixed-Point Data Types

Variable Proposed
Signedness

Proposed Word
Length

Proposed
Fraction Length

y Signed 16 14

x Signed 16 14

z Signed 16 15

a Unsigned 16 18

b Signed 16 14

i Unsigned 16 0

For example, in fun_with_matlab, variable y is defined as y =
zeros(size(x));. In fun_with_fi, to specify that it is a signed fixed-point
data type with a word length of 16 and a fraction length of 14:

y = fi(zeros(size(x)),1,16,14,'OverflowAction','Wrap','RoundingMethod','Floor');

For more information, see fi.

Create and set up a MATLAB Coder Project

1 Navigate to the work folder that contains the file for this tutorial.

2 On the MATLAB Apps tab, select MATLAB Coder and then,
in the MATLAB Coder Project dialog box, set Name to
fun_with_fi_project.prj.

Alternatively, at the MATLAB command line, enter

coder -new fun_with_fi_project.prj

By default, the project opens in the MATLAB workspace.

14-59

14 Fixed-Point Conversion

3 On the project Overview tab, click the Add files link. Browse to the file
fun_with_fi.m, and then click OK to add the file to the project.

Define Input Types

1 On the project Overview tab, click the Autodefine types link.

2 In the Autodefine Input Types dialog box, add fun_with_fi_test as a
test file, and then click Run.

The test file runs and plots the outputs of the filter. MATLAB Coder
determines the input types from the test file and then displays them.

3 In the Autodefine Input Types dialog box, click Use These Types to accept
the autodefined input type.

MATLAB Coder sets the type of x to double(1x256).

The fun_with_fi_test Script

14-60

Apply Fixed-Point Data Types

The fun_with_fi_test script runs the original floating-point MATLAB
algorithm, fun_with_matlab, then runs the fixed-point version of the
algorithm, fun_with_fi. The script then plots the outputs for the
floating-point and fixed-point algorithms and the difference in results.

Run Simulation

1 In the project, click the Build tab.

2 On the Verification pane, verify that the test file is set to
fun_with_fi_test. Clear Redirect entry-point calls to MEX function
so that the test file calls the MATLAB versions of the original and
fixed-point algorithms.

3 On Verification pane, click Run.

The fun_with_fi_test file runs. The test file runs the original MATLAB
algorithm and the fixed-point version, and plots the difference in their
outputs.

14-61

14 Fixed-Point Conversion

4 Optionally, zoom in on each plot in turn to view the error (difference
between the two versions of the algorithm). In this example, the errors are
very small, on the order of 10-3. If the error is unacceptably large, refine
the fixed-point data types.

14-62

Modify Data Type Proposal Settings

Modify Data Type Proposal Settings
When generating instrumented MEX functions, to modify data type proposal
settings, on the project Build tab, on the Show Instrumentation Results
pane, click Data type proposal and report settings.

Type Proposal
Setting

Description

Propose data
types

Specify whether to propose data types based on simulation minimum
and maximum values. You can view the proposed data types in the code
generation report.

Dependencies:

• This parameter enables:

- Propose fraction lengths for specified word lengths

- Propose word lengths for specified fraction lengths

- Default data type of all floating-point expressions

- Safety margin for min/max values

- Optimize whole numbers

14-63

14 Fixed-Point Conversion

Type Proposal
Setting

Description

Propose
fraction
lengths for
specified word
lengths

Select to propose fraction lengths for the word lengths specified in the code.

Use simulation minimum and maximum information to propose fraction
lengths for variables in your entry-point MATLAB function. MATLAB
Coder proposes data types for variables that are scaled doubles and built-in
data types only. For floating-point data types in your entry-point function,
uses the word length and signedness specified in Default data type of all
floating-point expressions to determine the optimal fraction lengths.

Dependency:

• Clearing Propose data types disables this parameter.

Propose word
lengths for
specified
fraction
lengths

Select to propose word lengths for the fraction lengths specified in the code.

Use simulation minimum and maximum information to propose word
lengths for variables in your entry-point MATLAB function. MATLAB Coder
proposes data types for variables that are scaled doubles and built-in data
types only. For floating-point data types in your entry-point function, uses
the fraction length and signedness specified in Default data type of all
floating-point expressions to determine the optimal word lengths.

Dependency:

• Clearing Propose data types disables this parameter.

14-64

Modify Data Type Proposal Settings

Type Proposal
Setting

Description

Specify the default data type to use for floating-point expressions in your
entry-point MATLAB function.

MATLAB Coder uses this default data type to change the floating-point
data types in the code to fixed point.

Dependency:

• Clearing Propose data types disables this parameter.

numerictype([],16,12)
(Default)

Set the default data type for floating-point
signals to the fixed-point data type specified by
numerictype. You can modify the parameters
provided to numerictype to specify signedness,
word length, and fraction length.

Specifying [] for signedness instructs MATLAB
Coder to choose the appropriate signedness.

Remain floating-point Do not change the data type of floating-point
signals.

int8 Set the default data type for floating-point
signals to int8.

int16 Set the default data type for floating-point
signals to int16.

Default data
type of all
floating-point
expressions

int32 Set the default data type for floating-point
signals to int32.

14-65

14 Fixed-Point Conversion

Type Proposal
Setting

Description

Safety margin
for min/max
values

Specify safety factor for simulation minimum and maximum values.

The simulation minimum and maximum values are adjusted by the
percentage designated by this parameter, allowing you to specify a range
different from that obtained from the simulation run. For example, a value
of 55 specifies that you want a range at least 55 percent larger. A value of
-15 specifies that a range up to 15 percent smaller is acceptable.

Dependency:

• Clearing Propose data types disables this parameter.

Optimize whole
numbers

Specify to use integer scaling for variables that were whole numbers during
simulation.

Dependency:

• Clearing Propose data types disables this parameter.

14-66

Modify Instrumentation Report Settings

Modify Instrumentation Report Settings
When generating instrumented MEX functions, to modify instrumentation
report settings, on the project Build tab, on the Show Instrumentation
Results pane, click Data type proposal and report settings.

Report Setting Description

Automatically launch
report after running test
file

Specify whether to automatically display the report after
running the test file.

Open report in a web
browser

Specify whether to open the report in a Web browser. Enabling
this option allows you to open multiple reports simultaneously.

Create printable report Specify whether to create a printable report.

14-67

14 Fixed-Point Conversion

Automated Fixed-Point Conversion

In this section...

“License Requirements” on page 14-68

“Fixed-Point Conversion Capabilities” on page 14-68

“Code Coverage” on page 14-70

“Proposing Data Types” on page 14-74

“Viewing Functions” on page 14-76

“Viewing Variables” on page 14-76

“Histogram” on page 14-77

“Function Replacements” on page 14-79

“Validating Types” on page 14-79

“Testing Numerics” on page 14-79

License Requirements
Fixed-point conversion requires the following licenses:

• Fixed-Point Designer

• MATLAB Coder

Fixed-Point Conversion Capabilities
You can convert floating-point MATLAB code to fixed-point code using the
Fixed-Point Conversion tool in MATLAB Coder projects. You can choose to
propose data types based on simulation range data, derived (also known as
static) range data, or both.

14-68

Automated Fixed-Point Conversion

During fixed-point conversion, you can:

• Verify that your test files cover the full intended operating range of your
algorithm using code coverage results.

• Propose fraction lengths based on default word lengths.

• Propose word lengths based on default fraction lengths.

• Optimize whole numbers.

14-69

14 Fixed-Point Conversion

• Specify safety margins for simulation min/max data.

• Validate that you can build your project with the proposed data types.

• Test numerics by running the test file with the fixed-point types applied.

• View a histogram of bits used by each variable.

Fixed-Point Conversion Limitations
Fixed-point conversion does not support MATLAB classes.

Code Coverage
By default, the Fixed-Point Conversion tool shows code coverage results. Your
test files should exercise the algorithm over its full operating range so that
the simulation ranges are accurate. The quality of the proposed fixed-point
data types depends on how well the test files cover the operating range of the
algorithm with the accuracy that you want. Reviewing code coverage results
helps you verify that your test file is exercising the algorithm adequately. If
the code coverage is inadequate, modify the test file or add more test files
to increase coverage. If you simulate multiple test files in one run, the tool
displays cumulative coverage. However, if you specify multiple test files but
run them one at a time, the tool displays the coverage of the file that ran last.

Code coverage is on by default. Turn it off only after you have verified that
you have adequate test file coverage. Turning off code coverage might speed
up simulation. To turn off code coverage, in the Fixed-Point Conversion tool:

1 Click Run Simulation.

2 Clear Show code coverage.

The tool covers basic MATLAB control constructs and shows statement
coverage for basic blocks of code. The tool displays a color-coded coverage bar
to the left of the code.

14-70

Automated Fixed-Point Conversion

Coverage
Bar Color

How Often Code is Executed During Test File
Simulation

Dark green Always

Light green Sometimes

Orange Once

Red Never

14-71

14 Fixed-Point Conversion

When you position your cursor over the coverage bar, the color highlighting
extends over the code and the tool displays more information about how
often the code is executed. For MATLAB constructs that affect control flow
(if-elseif-else, switch-case, for-continue-break, return), it displays statement
coverage as a percentage coverage for basic blocks inside these constructs.

14-72

Automated Fixed-Point Conversion

To verify that your test file is testing your algorithm over the intended
operating range, review the code coverage results and take action as described
in the following table.

14-73

14 Fixed-Point Conversion

Coverage
Bar Color

Action Required

Dark green None

Light green Review percentage coverage and verify that it is reasonable
based on your algorithm. If there are areas of code that you
expect to be executed more frequently, modify your test file
or add more test files to increase coverage.

Orange This is expected behavior for initialization code, for
example, the initialization of persistent variables. For
other cases, verify that this behavior is reasonable for your
algorithm. If there are areas of code that you expect to be
executed more frequently, modify your test file or add more
test files to increase coverage.

Red If the code that is not executed is an error condition, this is
acceptable behavior. If the code should be executed, modify
the test file or add another test file to extend coverage. If
the code is written conservatively and has upper and lower
boundary limits and you cannot modify the test file to reach
this code, add static minimum and maximum values (see
“Computing Derived Ranges” on page 14-75).

Proposing Data Types
The Fixed-Point Conversion tool proposes fixed-point data types based
on computed ranges and the word length or fraction length setting. The
computed ranges are based on simulation range data, derived range data, or
both. If you run a simulation and compute derived ranges, the conversion tool
merges the simulation and derived ranges.

Running a Simulation
When you open the Fixed-Point Conversion tool, it generates an instrumented
MEX function for your entry-point MATLAB file. If the build completes
without errors, the tool displays compiled information (type, size, complexity)
for functions and variables in your code. To navigate to local functions, click
the Functions tab. If build errors occur, the tool provides error messages
that link to the line of code that caused the build issues. You must address
these errors before running a simulation. Use the link to navigate to the

14-74

Automated Fixed-Point Conversion

offending line of code in the MATLAB editor and modify the code to fix the
issue. If your code uses functions that are not supported for fixed-point
conversion, the tool displays them on the Function Replacements tab. See
“Function Replacements” on page 14-79.

Before running a simulation, specify the test file or files that you want to
run. When you run a simulation, the tool runs the test file, calling the
instrumented MEX function. If you modify the MATLAB design code, the tool
automatically generates an updated MEX function before running a test file.

If the test file runs successfully, the simulation minimum and maximum
values and the proposed types are displayed on the Variables tab. If the test
file fails, the errors are displayed on the Simulation Output tab.

Test files should exercise your algorithm over its full operating range. The
quality of the proposed fixed-point data types depends on how well the test file
covers the operating range of the algorithm with the desired accuracy. You can
add test files and select to run more than one test file during the simulation. If
you run multiple test files, the conversion tool merges the simulation results.

Optionally, you can select to log data for histograms. After running a
simulation, you can view the histogram for each variable. For more
information, see “Log Data for Histogram” on page 14-39.

Computing Derived Ranges
The advantage of proposing data types based on derived ranges is that you
do not have to provide test files that exercise your algorithm over its full
operating range. Running such test files often takes a very long time.

To compute derived ranges and propose data types based on these ranges,
provide static minimum and maximum values for all input variables. To
improve the analysis, enter as much static range information as possible for
other variables. You can promote simulation ranges to use as static ranges.
Alternatively, if you know what data type your hardware target uses, set the
proposed data type to match this type.

When you select Compute Derived Ranges, the tool runs a derived range
analysis to compute static ranges for variables in your MATLAB algorithm.
When the analysis is complete, the static ranges are displayed on the

14-75

14 Fixed-Point Conversion

Variables tab. If the run produces +/-Inf derived ranges, consider defining
ranges for all persistent variables.

Optionally, you can select Quick derived range analysis. With this option,
the conversion tool performs faster static analysis. The computed ranges
might be larger than necessary. Select this option in cases where the static
analysis takes more time than you can afford.

If the derived range analysis for your project is taking a long time, you can
optionally set a timeout. The tool aborts the analysis when the timeout is
reached.

Viewing Functions
You can view a list of functions in your project on the Navigation pane. This
list also includes function specializations. When you select a function from
the list, the MATLAB code for that function is displayed in the Fixed-Point
Conversion tool.

Viewing Variables
The Variables tab provides the following information for each variable in the
function selected in the Navigation pane:

• Type— The original data type of the variable in the MATLAB algorithm.

• Sim Min and Sim Max— The minimum and maximum values assigned
to the variable during simulation.

You can edit the simulation minimum and maximum values. Edited
fields are shown in bold. Editing these fields does not trigger static range
analysis, but the tool uses the edited values in subsequent analyses. You
can revert to the types proposed by the tool.

• Static Min and Static Max— The static minimum and maximum values.

14-76

Automated Fixed-Point Conversion

To compute derived ranges and propose data types based on these ranges,
provide static minimum and maximum values for all input variables. To
improve the analysis, enter as much static range information as possible
for other variables.

When you compute derived ranges, the Fixed-Point Conversion tool runs a
static analysis to compute static ranges for variables in your code. When
the analysis is complete, the static ranges are displayed. You can edit the
computed results. Edited fields are shown in bold. Editing these fields does
not trigger static range analysis, but the tool uses the edited values in
subsequent analyses. You can revert to the types proposed by the tool.

• Whole Number — Whether all values assigned to the variable during
simulation are integers.

The Fixed-Point Conversion tool determines whether a variable is always
a whole number. You can modify this field. Edited fields are shown in
bold. Editing these fields does not trigger static range analysis, but the
tool uses the edited values in subsequent analyses. You can revert to the
types proposed by the tool.

• The proposed fixed-point data type for the specified word (or fraction)
length. Proposed data types use the numerictype notation. For example,
numerictype(1,16,12) denotes a signed fixed-point type with a word
length of 16 and a fraction length of 12. numerictype(0,16,12) denotes an
unsigned fixed-point type with a word length of 16 and a fraction length
of 12.

You can also view and edit variable information in the code pane by placing
your cursor over a variable name.

You can use Ctrl+F to search for variables in the MATLAB code and on the
Variables tab. The tool highlights occurrences in the code and displays only
the variable with the specified name on the Variables tab.

Histogram
The histogram provides the range of the proposed data type and the
percentage of simulation values that the proposed data type covers. The bit
weights are displayed along the X-axis, and the percentage of occurrences
along the Y-axis. Each bin in the histogram corresponds to a bit in the binary

14-77

14 Fixed-Point Conversion

word. For example, this histogram displays the range for a variable of type
numerictype(1,16,14).

You can view the effect of changing the proposed data types by:

• Dragging the edges of the bounding box in the histogram window to change
the proposed data type.

• Selecting or clearing Signed.

14-78

Automated Fixed-Point Conversion

To revert to the types proposed by the automatic conversion, in the histogram

window, click .

Function Replacements
If your MATLAB code uses functions that do not have fixed-point support,
the tool lists these functions on the Function Replacements tab. You can
add and remove function replacements from this list. If you enter a function
replacements for a function, the replacement function is used when you build
the project. If you do not enter a replacement, the tool uses the type specified
in the original MATLAB code for the function.

Note Using this table, you can replace the names of the functions but you
cannot replace argument patterns.

Validating Types
Selecting Validate Types validates the build using the proposed fixed-point
data types. If the validation is successful, you are ready to test the numerical
behavior of the fixed-point MATLAB algorithm.

If the errors or warnings occur during validation, they are displayed on the
Type Validation Output tab. If errors or warning occur:

• On the Variables tab, inspect the proposed types and manually modified
types to verify that they are valid.

• On the Function Replacements tab, verify that you have provided
function replacements for unsupported functions.

Testing Numerics
After validating the proposed fixed-point data types, select Test Numerics to
verify the behavior of the fixed-point MATLAB algorithm. By default, if you
added a test file to define inputs or run a simulation, the tool uses this test
file to test numerics. Optionally, you can add test files and select to run more
than one test file. The tool compares the numerical behavior of the generated
fixed-point MATLAB code with the original floating-point MATLAB code. If
you select to log inputs and outputs for comparison plots, the tool generates an

14-79

14 Fixed-Point Conversion

additional plot for each scalar output. This plot shows the floating-point and
fixed-point results and the difference between them. For non-scalar outputs,
only the error information is shown.

By default, the Fixed-Point Conversion tool runs the test files that you added
and selected for running the simulation. You can add test files and select to
run more than one test file to test numerics.

If the numerical results do not meet your desired accuracy after fixed-point
simulation, modify fixed-point data type settings and repeat the type
validation and numerical testing steps. You might have to iterate through
these steps multiple times to achieve the desired results.

14-80

Instrumented MEX Functions

Instrumented MEX Functions

In this section...

“Generating Instrumented MEX Functions” on page 14-81

“Merging Instrumentation Results” on page 14-81

“Clearing Instrumentation Results” on page 14-82

“Redirecting Entry-Point Calls to MEX Function” on page 14-82

“Proposing Fraction Lengths” on page 14-82

“Proposing Word Lengths” on page 14-82

Generating Instrumented MEX Functions

Note This capability is not compatible with automatic fixed-point conversion.
If you select Convert to fixed point at build time, you cannot build
instrumented MEX functions.

Generating an instrumented MEX function for your MATLAB function
enables instrumentation for logging minimum and maximum values of named
and intermediate variables in your algorithm. It also enables instrumentation
for log2 histograms of named, intermediate and expression values.

When you run the instrumented MEX function, the instrumentation report
provides fixed-point data type proposals based on the simulation range data.
You can use this information to convert your MATLAB code to fixed point by
hand. For more information, see “Propose Fixed-Point Data Types” on page
14-47

Merging Instrumentation Results
When generating instrumented MEX functions, use the Merge
instrumentation results from multiple simulations option to specify
whether to merge new simulation minimum and maximum results with
existing simulation results. Merging instrumentation results allows you to
collect complete range information from multiple test files.

14-81

14 Fixed-Point Conversion

Clearing Instrumentation Results
When generating instrumented MEX functions, click the Clear
instrumentation results button to clear instrumentation results from
previous runs.

Redirecting Entry-Point Calls to MEX Function
By default, with the Redirect entry-point calls to MEX function option
selected, the MATLAB Coder software automatically redirects calls to your
MATLAB algorithm in the test file to calls to the generated MEX function.
The generated MEX function must be in the same folder as the entry-point
functions.

If your test file already calls the MEX function, or you want to run the test file
to test the original MATLAB algorithm, clear this option.

Proposing Fraction Lengths
When you simulate an instrumented MEX function, if you select to propose
fraction lengths for the word lengths specified in the code, MATLAB Coder
uses simulation minimum and maximum information and proposes fraction
lengths for variables in your entry-point MATLAB function. For floating-point
data types in your entry-point function, MATLAB Coder uses the word
length and signedness specified in Default data type of all floating-point
expressions to determine the optimal fraction lengths.

Optionally, specify a safety margin to use when proposing fraction lengths.
For more information, see “Modify Data Type Proposal Settings” on page
14-63.

Proposing Word Lengths
When you simulate an instrumented MEX function, if you select to propose
word lengths for the fraction lengths specified in the code, MATLAB Coder
uses simulation minimum and maximum information and proposes word
lengths for variables in your entry-point MATLAB function. For floating-point
data types in your entry-point function, MATLAB Coder uses the fraction
length and signedness specified in Default data type of all floating-point
expressions to determine the optimal word lengths.

14-82

Instrumented MEX Functions

Optionally, specify a safety margin to use when proposing word lengths. For
more information, see “Modify Data Type Proposal Settings” on page 14-63.

14-83

14 Fixed-Point Conversion

Convert Floating-Point MATLAB Code to Fixed-Point C
Code Using codegen

This example shows how to convert floating-point MATLAB code to fixed-point
C code using the codegen command.

Prerequisites

To complete this example, install the following products:

• MATLAB

• MATLAB Coder

• Fixed-Point Designer

You also must install a compiler. For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

Before generating C code, set up the C compiler. See “Setting Up the C/C++
Compiler”.

For instructions on installing MathWorks products, see the MATLAB
installation documentation. If you have installed MATLAB and want to see
which other MathWorks products are installed, in the Command Window,
enter ver .

Create a New Folder and Copy Relevant Files

1 Create a local working folder, for example, c:\coder\fun_with_matlab.

2 Change to the docroot\toolbox\coder\examples folder. At the command
prompt, enter:

cd(fullfile(docroot, 'toolbox', 'coder', 'examples'))

3 Copy the fun_with_matlab.m and fun_with_matlab_test.m files to your
local working folder.

14-84

Convert Floating-Point MATLAB® Code to Fixed-Point C Code Using codegen

Type Name Description

Function code fun_with_matlab.m Entry-point MATLAB
function

Test file fun_with_matlab_test.m MATLAB script that tests
fun_with_matlab.m

The fun_with_matlab Function

function y = fun_with_matlab(x) %#codegen
persistent z
if isempty(z)

z = zeros(2,1);
end
% [b,a] = butter(2, 0.25)
b = [0.0976310729378175, 0.195262145875635, 0.0976310729378175];
a = [1, -0.942809041582063, 0.3333333333333333];

y = zeros(size(x));
for i=1:length(x)

y(i) = b(1)*x(i) + z(1);
z(1) = b(2)*x(i) + z(2) - a(2) * y(i);
z(2) = b(3)*x(i) - a(3) * y(i);

end
end

The fun_with_matlab_test Script

The test script runs the fun_with_matlab function with three input signals:

• chirp

• step

• impulse

These signals cover the full intended operating range of the system. The
script then plots the outputs.

% fun_with_matlab_test

14-85

14 Fixed-Point Conversion

%
% Define representative inputs
N = 256; % Number of points
t = linspace(0,1,N); % Time vector from 0 to 1 second
f1 = N/2; % Target frequency of chirp set to Nyquist
x_chirp = sin(pi*f1*t.^2); % Linear chirp from 0 to Fs/2 Hz in 1 second
x_step = ones(1,N); % Step
x_impulse = zeros(1,N); % Impulse
x_impulse(1)=1;

% Run the function under test
x = [x_chirp;x_step;x_impulse];
y = zeros(size(x));
for i=1:size(x,1)

y(i,:) = fun_with_matlab(x(i,:));
end

% Plot the results
titles = {'Chirp','Step','Impulse'};
clf
for i=1:size(x,1)

subplot(size(x,1),1,i);
plot(t,x(i,:),t,y(i,:));
title(titles{i})
legend('Input','Output');

end
xlabel('Time (s)')
figure(gcf)

disp('Test complete.');

Create a Floating-Point to Fixed-Point Conversion Configuration Object

1 Create a coder.FixptConfig object, fixptcfg, with default settings.

fixptcfg = coder.config('fixpt');

2 Set the Test Bench Name.

fixptcfg.TestBenchName = 'fun_with_matlab_test';

14-86

Convert Floating-Point MATLAB® Code to Fixed-Point C Code Using codegen

Create a Code Generation Configuration Object

Create a code generation configuration object to generate a standalone C
static library.

cfg = coder.config('lib');

Convert Floating-Point MATLAB Code to Fixed-Point Code and Generate C Code

1 If you have not already navigated to the local folder that contains
fun_with_matlab.m and fun_with_matlab_test.m, change to this folder.

2 Convert the floating-point MATLAB function to fixed-point, and generate
C code.

codegen -float2fixed fixptcfg -config cfg fun_with_matlab

MATLAB Coder converts the floating-point code to fixed-point code using
the settings in fixptcfg. It then generates a C static library and supporting
files in the default subfolder, codegen\lib\fun_with_matlab_fixpt.

14-87

14 Fixed-Point Conversion

14-88

15

Bug Reports

15 Bug Reports

Check Bug Reports for Issues and Fixes
Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at http://www.mathworks.com/support/bugreports/. Use the
Saved Searches and Watched Bugs tool with the search phrase “Incorrect
Code Generation” to obtain a report of known bugs that produce code that
might compile and execute, but still produce wrong answers. Enter the search
phrase "Simulation And Code Generation Mismatch" to obtain a report of
known bugs where the output of the simulation differs from the output of the
generated code.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

15-2

http://www.mathworks.com/support/bugreports/

16

Setting Up a MATLAB
Coder Project

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Creating a New Project” on page 16-3

• “Opening an Existing Project” on page 16-5

• “Adding Files to the Project” on page 16-6

• “Specifying Properties of Primary Function Inputs in a Project” on page 16-7

• “Autodefine Input Types” on page 16-8

• “Define Input Parameters by Example in a Project” on page 16-12

• “Define or Edit Input Parameter Type in a Project” on page 16-19

• “Define Constant Input Parameters in a Project” on page 16-30

• “Define Inputs Programmatically in the MATLAB File” on page 16-31

• “Adding Global Variables in a Project” on page 16-32

• “Specifying Global Variable Type and Initial Value in a Project” on page
16-33

• “Specify Output File Name” on page 16-40

• “Specify Output File Locations” on page 16-41

• “Selecting Output Type” on page 16-42

16 Setting Up a MATLAB® Coder™ Project

MATLAB Coder Project Set Up Workflow
1 Create a new project or open an existing one.

2 Add the files from which you want to generate code.

3 Specify class, size, and complexity of all input parameters.

4 Optionally, add global variables.

5 Optionally, specify the output file name and output file locations.

6 Optionally, select the output type: MEX function (default), Instrumented
MEX function, C/C++ static library, C/C++ dynamic library or C/C++
executable.

16-2

Creating a New Project

Creating a New Project

From the MATLAB APPS Tab

1 Select the MATLAB Apps tab.

2 In the Code Generation group, click MATLAB Coder.

3 In the MATLAB Coder Project dialog box, on the New tab, enter the name
of your project in the Name field.

4 Enter the location of the project in the Location field.

Alternatively, use the ... (browse) button to navigate to the location.

5 Click OK.

At the Command Line

1 At the MATLAB command line, enter:

coder

16-3

16 Setting Up a MATLAB® Coder™ Project

2 In the Name field, enter the project_name.

3 In the Location field, enter the location of the project.

Alternatively, use the ... (browse) button to navigate to the location.

Note The path should not contain spaces, as this can lead to code
generation failures in certain operating system configurations. If the
path contains non 7-bit ASCII characters, such as Japanese characters,
MATLAB Coder might not be able to find files on this path.

4 Click OK.

MATLAB Coder creates a project named project_name.prj in the specified
location and marks it with the project icon: .

From a MATLAB Coder Project
If you already have a MATLAB Coder project open, in the upper-right corner
of the project, click the Actions icon () and select New Project.

16-4

Opening an Existing Project

Opening an Existing Project

In this section...

“From the MATLAB APPS Tab” on page 16-5

“At the Command Line” on page 16-5

“From a MATLAB® Coder™ Project” on page 16-5

From the MATLAB APPS Tab

1 Select the MATLAB Apps tab.

2 In the Code Generation group, click MATLAB Coder.

3 In the MATLAB Coder Project dialog box, click the Open tab.

4 From the drop-down list, select a previously opened project or use the
Browse button to find a project.

5 Click OK.

At the Command Line

1 At the MATLAB command line, enter coder.

2 In the Code Generation Project dialog box, click the Open tab.

3 From the drop-down list, select a previously opened project or click the
Browse button to find a project.

4 Click OK.

From a MATLAB Coder Project
If you already have a MATLAB Coder project open, in the upper-right corner
of the project, click the Actions icon () and select Open Project.

16-5

16 Setting Up a MATLAB® Coder™ Project

Adding Files to the Project
First, you must add the MATLAB files from which you want to generate code
to the project.

• Add only the main (entry-point) files that you call from MATLAB.

• Do not add files that are called by these files.

• Do not add files that have spaces in their names. The path should not
contain spaces, as this can lead to code generation failures in certain
operating system configurations.

• If the path contains non 7-bit ASCII characters, such as Japanese
characters, MATLAB Coder might not be able to find files on this path.

To add a file, do one of the following:

• In the project, in the Entry-Point Files pane on the Overview tab, click
the Add files link and browse to the file.

• Drag a file from the current folder and drop it in the Entry-Point Files
pane on the Overview tab.

If you add more than one entry-point file, MATLAB Coder lists them
alphabetically.

If the functions that you added have inputs, you must define these inputs. See
“Specifying Properties of Primary Function Inputs in a Project” on page 16-7.

16-6

Specifying Properties of Primary Function Inputs in a Project

Specifying Properties of Primary Function Inputs in a
Project

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB Coder must
determine the properties of all variables in the MATLAB files at code
generation time. To infer variable properties in MATLAB files, MATLAB
Coder must be able to identify the properties of the inputs to the entry-point
function. Therefore, if your entry-point function has inputs, you must
specify the properties of these inputs. If your primary function has no
input parameters, MATLAB Coder can compile your MATLAB file without
modification. You do not need to specify properties of inputs to local functions
or external functions called by the entry-point function.

You must specify the same number and order of inputs as the MATLAB
function unless you use the tilde (~) character to specify unused function
inputs. If you use the tilde character, the inputs default to real, scalar doubles.

See Also

• “Properties to Specify” on page 19-40

How to Specify an Input Definition in a Project
Specify an input definition in your MATLAB Coder project using one of the
following methods:

• Autodefine Input Types

• Define Type

• Define by Example

• Define Constant

• Define Programmatically in the MATLAB File

Alternatively, specify input definitions at the command line and then use
the codegen function to generate code. For more information, see “Primary
Function Input Specification” on page 19-40.

16-7

16 Setting Up a MATLAB® Coder™ Project

Autodefine Input Types

In this section...

“How MATLAB Coder Autodefines Input Types” on page 16-8

“Prerequisites for Autodefining Input Types” on page 16-8

“How to Autodefine Input Types” on page 16-8

How MATLAB Coder Autodefines Input Types
If you specify a test file that calls the project entry-point functions, the
MATLAB Coder software can infer the input parameter types by running
the test file. If a test file calls an entry-point function multiple times with
different sized inputs, the MATLAB Coder software takes the union of the
inputs and infers that the inputs are variable size, with an upper bound equal
to the size of the largest input.

Prerequisites for Autodefining Input Types
Before using MATLAB Coder to autodefine function input parameter types,
you must add at least one entry-point file to your project. You must also
specify a test file that calls your entry-point functions with the expected input
types. The test file can be either a MATLAB function or a script. It should
call the entry-point function at least once.

How to Autodefine Input Types

1 On the MATLAB Coder project Overview tab, click the Autodefine types
link.

16-8

Autodefine Input Types

2 In the Autodefine Input Types dialog box, click the button to add a
test file to the project.

3 Browse to the folder that contains the test file and select the file.

Alternatively, if you have already added test files to the project, select
one from the list.

4 Click the Run button.

16-9

16 Setting Up a MATLAB® Coder™ Project

The software runs the test file and, if the file calls entry-point functions,
infers input types for these functions.

The dialog box displays a summary of the inferred types and provides the
following options:

• Make dimensions variable-sized if they are at least

If you want inputs above a specified size to be variable size with an
upper bound, select this option and specify the threshold. If the size, S, of
any dimension of an input is equal to or greater than this threshold, the
software makes this dimension variable size with an upper bound of S.

• Make dimensions unbounded if they are at least

If you want inputs above a specified size to be variable size with no
upper bounds (unbounded), select this option and specify the threshold.

16-10

Autodefine Input Types

If the size of any dimension of an input is equal to or greater than this
threshold, the software makes this dimension unbounded.

5 Review the inferred types. If the types are acceptable, click Use These
Types. Otherwise, modify your test file, use a different test file to
autodefine the types or define them using an alternate method. For more
information, see “How to Specify an Input Definition in a Project” on page
16-7.

16-11

16 Setting Up a MATLAB® Coder™ Project

Define Input Parameters by Example in a Project

In this section...

“How to Define an Input Parameter by Example” on page 16-12

“Specifying Input Parameters by Example” on page 16-13

“Specifying an Enumerated Type Input Parameter by Example” on page
16-15

“Specifying a Fixed-Point Input Parameter by Example” on page 16-17

How to Define an Input Parameter by Example

1 On the MATLAB Coder project Overview tab, click the input parameter
that you want to define.

16-12

Define Input Parameters by Example in a Project

2 From the list of input options, select Define by Example.

3 In the field to the right of the parameter, enter a MATLAB expression.
MATLAB Coder software uses the class, size, and complexity of the value
of the specified variable or MATLAB expression when compiling the code.

Specifying Input Parameters by Example
This example shows how too specify a 1-by-4 vector of unsigned 16-bit
integers.

16-13

16 Setting Up a MATLAB® Coder™ Project

1 On the MATLAB Coder project Overview tab, click the input parameter
that you want to define.

2 From the list of input options, select Define by Example.

3 In the field to the right of the parameter, enter:

zeros(1,4,'uint16')

The input type is uint16(1x4).

4 Optionally, after specifying the input type, you can specify that the input
is variable size.

16-14

Define Input Parameters by Example in a Project

Select the second dimension.

5 From the list of size options, select :4 to specify that the second dimension
is variable size with an upper bound of 4. Alternatively, select :Inf to
specify that the second dimension is unbounded.

Alternatively, you can specify that the input is variable size by using the
coder.newtype function. Enter the following MATLAB expression:

coder.newtype('uint16',[1 4],[0 1])

Note To specify that an input is a double-precision scalar, simply enter 0.

Specifying an Enumerated Type Input Parameter by
Example
This example shows how to specify that an input uses the enumerated type
MyColors.

1 Define an enumeration MyColors. On the MATLAB path, create a file
named 'MyColors' containing:

16-15

16 Setting Up a MATLAB® Coder™ Project

classdef(Enumeration) MyColors < int32
enumeration

green(1),
red(2),

end
end

2 On the MATLAB Coder project Overview tab, click to the input parameter
that you want to define.

16-16

Define Input Parameters by Example in a Project

3 From the list of input options, select Define by Example.

4 In the field to the right of the parameter, enter the following MATLAB
expression:

MyColors.red

Specifying a Fixed-Point Input Parameter by Example
To specify fixed-point inputs, you must install Fixed-Point Designer software.

This example shows how to specify a signed fixed-point type with a word
length of 8 bits, and a fraction length of 3 bits.

1 On the MATLAB Coder project Overview tab, click the input parameter
that you want to define.

16-17

16 Setting Up a MATLAB® Coder™ Project

2 From the list of input options, select Define by Example.

3 In the field to the right of the parameter, enter:

fi(10, 1, 8, 3)

MATLAB Coder sets the type of input u to embedded.fi(1x1). By default,
if you have not specified a local fimath, MATLAB Coder uses the default
fimath. For more information, see “fimath for Sharing Arithmetic Rules”.

Optionally, modify the fixed-point properties of the input, see “Specifying
a Fixed-Point Input Parameter by Type” on page 16-22 or the size of the
input, see “Define or Edit Input Parameter Type in a Project” on page 16-19.

16-18

Define or Edit Input Parameter Type in a Project

Define or Edit Input Parameter Type in a Project

In this section...

“How to Define or Edit an Input Parameter Type” on page 16-19

“Specifying an Enumerated Type Input Parameter by Type” on page 16-21

“Specifying a Fixed-Point Input Parameter by Type” on page 16-22

“Specifying Structures” on page 16-23

How to Define or Edit an Input Parameter Type
The following procedure is for input types double, single, int64, int32,
int16, int8, uint64, uint32, uint16, uint8, logical, and char.

For more information about defining other types, see the following table.

Input Type Link

A structure (struct) “Specifying Structures” on page
16-23

A fixed-point data type
(embedded.fi)

“Specifying a Fixed-Point Input
Parameter by Type” on page 16-22

An input by example (Define by
Example)

“Define Input Parameters by
Example in a Project” on page 16-12

A constant (Define Constant) “Define Constant Input Parameters
in a Project” on page 16-30

1 On the Overview tab Entry-Point Files pane, click the field to the right
of the input parameter name to view the input options.

16-19

16 Setting Up a MATLAB® Coder™ Project

2 Optionally, for numeric types, select Complex number to make the
parameter a complex type. By default, inputs are real.

3 Select the input type.

The selected type is displayed for the input parameter together with size
options.

16-20

Define or Edit Input Parameter Type in a Project

4 From the list, select whether your input is a scalar, a 1 x n vector, a m x
1 vector or a m x n matrix. By default, if you do not select a size option,
MATLAB Coder defines inputs as scalars.

5 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.

• Variable size, up to a specified limit, by using the : prefix. For example,
to specify that your input can vary in size up to 10, enter :10.

• Unbounded variable size by entering :Inf.

You can edit the size of each dimension after specifying it.

Specifying an Enumerated Type Input Parameter by
Type
To specify that an input uses the enumerated type MyColors:

16-21

16 Setting Up a MATLAB® Coder™ Project

1 Define an enumeration MyColors. On the MATLAB path, create a file
named 'MyColors' containing:

classdef(Enumeration) MyColors < int32
enumeration

green(1),
red(2),

end
end

2 In the field to the right of the input parameter, enter MyColors.

Specifying a Fixed-Point Input Parameter by Type
To specify fixed-point inputs, you must install Fixed-Point Designer software.

1 On the Overview tab Entry-Point Files pane, click the box to the right of
the input parameter name to view the input options.

16-22

Define or Edit Input Parameter Type in a Project

2 Select embedded.fi.

The Properties dialog box opens.

3 In this dialog box, set up the input parameter numerictype and fimath
properties and then close the dialog box.

If you do not specify a local fimath, MATLAB Coder uses the default fimath.
For more information, see “Default fimath Usage to Share Arithmetic
Rules”.

4 The size of the input defaults to 1x1. Optionally, modify the size by
selecting the dimension that you want to change and entering a new size.

Specifying Structures
When a primary input is a structure, MATLAB Coder treats each field as
a separate input. Therefore, you must specify properties for all fields of
a primary structure input in the order that they appear in the structure
definition, as follows:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.

16-23

16 Setting Up a MATLAB® Coder™ Project

Specifying Structures by Type

1 On the Overview tab Entry-Point Files pane, click the field to the right
of the input parameter name to view the input options.

2 From the list of input options, select struct.

The selected type, struct, is displayed for the input parameter together
with size options.

16-24

Define or Edit Input Parameter Type in a Project

3 From the list, select whether your structure is a scalar, 1 x n vector, m x
1 vector or m x n matrix. By default, if you do not select a size option,
MATLAB Coder defines inputs as scalars.

4 Optionally, if your input is not scalar, enter sizes m and n. You can specify:

• Fixed size, for example, 10.

• Variable size, up to a specified limit, by using the : prefix. For example,
to specify that your input can vary in size up to 10, enter :10.

• Unbounded variable size by entering :Inf.

5 Optionally, add fields to the structure as described in “How to Add a Field
to a Structure” on page 16-28 and then set their size and complexity.

6 Optionally, specify properties for the structure in the generated code as
described in “How to Set Structure Properties” on page 16-26.

16-25

16 Setting Up a MATLAB® Coder™ Project

How to Set Structure Properties

1 To the right of the structure definition, click the Actions icon, ().

The structure properties dialog box opens.

2 Specify properties for the structure in the generated code.

Property Description

C type definition name Name to use for the structure
variable in the generated code.

Type definition is externally
defined

Default: No — type definition is
not externally defined

If you select ‘Yes’ to declare an
externally defined structure,
MATLAB Coder does not generate
the definition of the structure type;
you must provide it in a custom
include file.

Dependency: This option is enabled
by C type definition name.

16-26

Define or Edit Input Parameter Type in a Project

Property Description

C type definition header file Name of the header file that
contains the external definition
of the structure, for example,
"mystruct.h". Specify the path
to the file using the Additional
include directories parameter on
the Project Settings dialog box
Custom Code tab.
By default, the generated code
contains #include statements
for custom header files after
the standard header files. If a
standard header file refers to the
custom structure type, then the
compilation fails. By specifying
the C type definition header file
option, MATLAB Coder includes
that header file exactly at the point
where it is required.

Must be a non-empty string.

Dependency: This option is
enabled when Type definition
is externally defined is set to
Yes.

Data alignment boundary The run-time memory alignment
of structures of this type in bytes.
If you have an Embedded Coder
license and use Code Replacement
Libraries (CRLs), the CRLs
provide the ability to align data
objects passed into a replacement
function to a specified boundary.
This capability allows you to
take advantage of target-specific
function implementations that
require data to be aligned. By
default, the structure is not aligned

16-27

16 Setting Up a MATLAB® Coder™ Project

Property Description

on any specific boundary so it will
not be matched by CRL functions
that require alignment.

Alignment must be either -1 or a
power of 2 that is no more than 128.

Default: 0

Dependency: This option is
enabled when Type definition
is externally defined is set to
Yes.

How to Rename a Field in a Structure
On the project Overview tab, select the name field of the structure that you
want to rename and enter the new name.

How to Add a Field to a Structure

1 On the project Overview tab, select the structure to which you want to
add a field.

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Add Field.

If the structure already contains other fields, MATLAB Coder adds the
field after the existing fields.

4 Enter the field name and define its type.

How to Insert a Field into a Structure

1 On the project Overview tab, select the field under which you want to
add another field.

16-28

Define or Edit Input Parameter Type in a Project

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Insert Field.

MATLAB Coder adds the field after the selected field.

4 Enter the field name and define its type.

How to Remove a Field from a Structure

1 In the project Overview tab, select the field that you want to remove.

2 To the right of the structure, click the Actions icon () to open the context
menu.

3 From the menu, select Remove Field.

16-29

16 Setting Up a MATLAB® Coder™ Project

Define Constant Input Parameters in a Project
1 On the Overview tab Entry-Point Files pane, click the field to the right
of the input parameter name to view the input options.

2 Select Define Constant.

3 In the field to the right of the parameter name, enter the value of the
constant or a MATLAB expression that represents the constant.

MATLAB Coder software uses the value of the specified MATLAB
expression as a compile-time constant.

16-30

Define Inputs Programmatically in the MATLAB® File

Define Inputs Programmatically in the MATLAB File
You can use the MATLAB assert function to define properties of primary
function inputs directly in your MATLAB entry-point files.

To enable this option, on the Project Settings dialog box All Settings
tab, under Advanced, select Determine input types from source code
preconditions. If you enable this option:

• MATLAB Coder labels all entry-point function inputs as Deferred and
determines the input types at compile time.

• You cannot specify input types in this project using any other input
specification method.

For more information, see “Define Input Properties Programmatically in the
MATLAB File” on page 19-52.

16-31

16 Setting Up a MATLAB® Coder™ Project

Adding Global Variables in a Project
To add global variables to the project:

1 On the project Overview tab, click Add global.

By default, MATLAB Coder names the first global variable in a project g,
and subsequent global variables g1, g2, etc.

2 Enter the name of the global variable.

3 After adding a global variable, before building the project, specify its type
and initial value. If you do not do this, you must create a variable with the
same name in the global workspace. See “Specifying Global Variable Type
and Initial Value in a Project” on page 16-33.

16-32

Specifying Global Variable Type and Initial Value in a Project

Specifying Global Variable Type and Initial Value in a
Project

In this section...

“Why Specify a Type Definition for Global Variables?” on page 16-33

“How to Specify a Global Variable Type” on page 16-33

“Defining a Global Variable by Example” on page 16-34

“Defining or Editing Global Variable Type” on page 16-35

“Defining Global Variable Initial Value” on page 16-37

“Removing Global Variables” on page 16-39

Why Specify a Type Definition for Global Variables?
If you use global variables in your MATLAB algorithm, before building the
project, you must add a global type definition and initial value for each. If
you do not initialize the global data, MATLAB Coder looks for the variable
in the MATLAB global workspace. If the variable does not exist, MATLAB
Coder generates an error.

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable. At code
generation time, MATLAB Coder needs to have an initial value to determine
the type of a global variable. Otherwise, the global variable might be used
before it is defined and then MATLAB Coder cannot determine the type to use
in the generated code.

For MEX functions, if you use global data, you must also specify whether to
synchronize this data between MATLAB and the MEX function. For more
information, see “Synchronizing Global Data with MATLAB” on page 19-79.

How to Specify a Global Variable Type
1 Specify the type of each global variable using one of the following methods:

• Define by example

• Define type

16-33

16 Setting Up a MATLAB® Coder™ Project

2 Define an initial value for each global variable.

If you do not provide a type definition and initial value for a global variable,
you must create a variable with the same name and suitable class, size,
complexity, and value in the MATLAB workspace.

Defining a Global Variable by Example

1 On the project Overview tab, click the field to the right of the global
variable that you want to define.

2 Select Define by Example.

3 In the field to the right of the global name, enter a MATLAB expression
that has the required class, size, and complexity. MATLAB Coder software
uses the class, size, and complexity of the value of this expression as the
type for the global variable.

4 Optionally, change the size of the global variable. Click the dimension that
you want to change and enter the size, for example, 10.

16-34

Specifying Global Variable Type and Initial Value in a Project

You can specify:

• Fixed size. In this example, select 10.

• Variable size, up to a specified limit, by using the : prefix. In this
example, to specify that your input can vary in size up to 10, select :10.

• Unbounded variable size by selecting :Inf.

Note You define global variables in the same way that you define input
parameters. For more information, see “Define Input Parameters by Example
in a Project” on page 16-12

Defining or Editing Global Variable Type

1 On the project Overview tab, click the field to the right of the global
variable that you want to define.

16-35

16 Setting Up a MATLAB® Coder™ Project

2 Optionally, for numeric types, select Complex to make the parameter a
complex type. By default, inputs are real.

3 Select the type for the global variable. For example, double.

By default, the global variable is a scalar.

4 Optionally, change the size of the global variable. Click the dimension that
you want to change and enter the size, for example, 10.

You can specify:

16-36

Specifying Global Variable Type and Initial Value in a Project

• Fixed size. In this example, select 10.

• Variable size, up to a specified limit, by using the : prefix. In this
example, to specify that your input can vary in size up to 10, select :10.

• Unbounded variable size by selecting :Inf.

Defining Global Variable Initial Value

• “Define Initial Value Before Defining Type” on page 16-37

• “Define Initial Value After Defining Type” on page 16-38

Define Initial Value Before Defining Type

1 On the project Overview tab, click the field to the right of the global
variable.

2 Select Define Initial Value.

3 Enter a MATLAB expression. MATLAB Coder software uses the value
of the specified MATLAB expression as the value of the global variable.

16-37

16 Setting Up a MATLAB® Coder™ Project

Because you did not define the type of the global variable before you defined
its initial value, MATLAB Coder uses the type of the initial value as the
global variable type.

The project displays that the global variable is initialized.

If you change the type of a global variable after defining its initial value,
you must redefine the initial value.

Define Initial Value After Defining Type

1 On the project Overview tab, click the type field of the global variable.

2 Select Define Initial Value.

16-38

Specifying Global Variable Type and Initial Value in a Project

3 Enter a MATLAB expression. MATLAB Coder software uses the value of
the specified MATLAB expression as the value of the global variable.

The project displays that the global variable is initialized.

Removing Global Variables

1 On the project Overview tab, select the global variable that you want to
remove.

2 To the right of the variable, click the Actions icon () to open the context
menu.

3 From this menu, select Remove Global.

MATLAB Coder removes the global variable.

16-39

16 Setting Up a MATLAB® Coder™ Project

Specify Output File Name
On the project Build tab, in the Output file field, enter the file name. The
file name can include an existing path.

Note Do not put any spaces in the file name.

By default, if the name of the first entry-point MATLAB file is fcn1, the
output file name is:

• fcn1 for C/C++ libraries and executables.

• fcn1_mex for MEX functions.

By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• project_folder is your current project folder

• target is:

- mex for MEX functions

- lib for static C/C++ libraries

- dll for dynamic C/C++ libraries

- exe for C/C++ executables

To learn how to change the default output folder, see “Specify Output File
Locations” on page 16-41.

Command Line Alternative
Use the codegen function -o option.

16-40

Specify Output File Locations

Specify Output File Locations
The path should not contain:

• Spaces, as this can lead to code generation failures in certain operating
system configurations.

• Non 7-bit ASCII characters, such as Japanese characters.

1 On the project Build tab, click More settings.

2 In the Project Settings dialog box, click the Paths tab.

The default setting for the Build Folder field is A subfolder of the
project folder. By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• fcn1 is the name of the first entry-point file

• target is:

– mex for MEX functions

– dll for dynamic C/C++ libraries

– lib for static C/C++ libraries

– exe for C/C++ executables

3 To change the output location, you can either:

• Set Build Folder to A subfolder of the current MATLAB working
folder

MATLAB Coder generates files in the
MATLAB_working_folder/codegen/target/fcn1 folder

• Set Build Folder to Specified folder. In the Build folder name
field, provide the path to the folder.

Command Line Alternative
Use the codegen function -d option.

16-41

16 Setting Up a MATLAB® Coder™ Project

Selecting Output Type
On the project Build tab, from the Output type drop-down list, select one of
the available output types:

• MEX Function (default)

• Instrumented MEX Function

Building an instrumented MEX function requires a Fixed-Point Designer
license and clears prior instrumentation results.

• C/C++ Static Library

• C/C++ Dynamic Library

• C/C++ Executable

Command Line Alternative
Use the codegen function -config option.

Changing Output Type
MEX functions use a different set of configuration parameters than C/C++
libraries and executables use. When you switch the output type between
MEX Function or Instrumented MEX Function and C/C++ Static Library,
C/C++ Dynamic Library or C/C++ Executable, you should verify these
settings.

If you enable any of the following parameters when the output type is MEX
Function or Instrumented MEX Function, and you want to use the same
setting for C/C++ code generation as well, you must enable it again for C/C++
Static Library, C/C++ Dynamic Library, and C/C++ Executable.

16-42

Selecting Output Type

Check These MATLAB Coder Project Parameters When
Changing Output Type

Project Settings Dialog
Box Tab

Parameter Name

Working folder

Build folder

Paths

Search paths

Speed Saturate on integer overflow

Enable variable-sizing

Dynamic memory allocation

Memory

Stack usage max

Generated file partitioning method

Include comments

MATLAB source code as comments

Code Appearance

Reserved names

Always create a code generation reportDebugging

Automatically launch a report if one is
generated

Source file

Header file

Initialize function

Terminate function

Additional include directories

Additional source files

Additional libraries

Custom Code

Post-code-generation command

16-43

16 Setting Up a MATLAB® Coder™ Project

Project Settings Dialog
Box Tab

Parameter Name

Constant folding timeout

Language

Inline threshold

Inline threshold max

Inline stack limit

Use memcpy for vector assignment

Memcpy threshold (bytes)

Advanced

Use memset to initialize floats and doubles
to 0.0

Check These Command-Line Parameters When Changing
Output Type
When you switch between MEX and C output types, check these
coder.MexCodeConfig, coder.CodeConfig or coder.EmbeddedCodeConfig
configuration object parameters, as applicable.

• ConstantFoldingTimeout

• CustomHeaderCode

• CustomInclude

• CustomInitializer

• CustomLibrary

• CustomSource

• CustomSourceCode

• CustomTerminator

• DynamicMemoryAllocation

• EnableMemcpy

• EnableVariableSizing

16-44

Selecting Output Type

• FilePartitionMethod

• GenCodeOnly

• GenerateComments

• GenerateReport

• InitFltsAndDblsToZero

• InlineStackLimit

• InlineThreshold

• InlineThresholdMax

• LaunchReport

• MATLABSourceComments

• MemcpyThreshold

• PostCodeGenCommand

• ReservedNameArray

• SaturateOnIntegerOverflow

• StackUsageMax

• TargetLang

16-45

16 Setting Up a MATLAB® Coder™ Project

16-46

17

Preparing MATLAB Code
for C/C++ Code Generation

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Fixing Errors Detected at Design Time” on page 17-4

• “Using the Code Analyzer” on page 17-5

• “Check Code With the Code Analyzer” on page 17-6

• “Check Code Using the Code Generation Readiness Tool” on page 17-8

• “Code Generation Readiness Tool” on page 17-10

• “Unable to Determine Code Generation Readiness” on page 17-17

• “Generate MEX Functions Using the MATLAB® Coder™ Project Interface”
on page 17-18

• “Generate MEX Functions at the Command Line” on page 17-27

• “Fix Errors Detected at Code Generation Time” on page 17-29

• “Design Considerations When Writing MATLAB Code for Code Generation”
on page 17-30

• “Running MEX Functions” on page 17-32

• “Debugging Strategies” on page 17-33

17 Preparing MATLAB® Code for C/C++ Code Generation

Workflow for Preparing MATLAB Code for Code
Generation

17-2

Workflow for Preparing MATLAB® Code for Code Generation

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Fixing Errors Detected at Design Time” on page 17-4

• “Generate MEX Functions Using the MATLAB® Coder™ Project Interface”
on page 17-18

• “Fix Errors Detected at Code Generation Time” on page 17-29

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “C/C++ Code Generation” on page 19-5

• “Accelerate MATLAB Algorithms” on page 22-15

17-3

17 Preparing MATLAB® Code for C/C++ Code Generation

Fixing Errors Detected at Design Time
Use the code analyzer and the code generation readiness tool to detect issues
at design time. Before generating code, you must fix these issues.

See Also

• “Check Code With the Code Analyzer” on page 17-6

• “Check Code Using the Code Generation Readiness Tool” on page 17-8

• “Design Considerations When Writing MATLAB Code for Code Generation”
on page 17-30

• “Debugging Strategies” on page 17-33

17-4

Using the Code Analyzer

Using the Code Analyzer
You use the code analyzer in the MATLAB Editor to check for code
violations at design time, minimizing compilation errors. The code analyzer
continuously checks your code as you enter it. It reports problems and
recommends modifications.

To use the code analyzer to identify warnings and errors specific to MATLAB
for code generation, you must add the %#codegen directive (or pragma) to
your MATLAB file. A complete list of code generation analyzer messages is
available in the MATLAB Code Analyzer preferences. For more information,
see “Running the Code Analyzer Report”.

Note The code analyzer might not detect all MATLAB for code generation
issues. After eliminating the errors or warnings that the code analyzer
detects, compile your code with MATLAB Coder to determine if the code has
other compliance issues.

17-5

17 Preparing MATLAB® Code for C/C++ Code Generation

Check Code With the Code Analyzer
The code analyzer checks your code for problems and recommends
modifications. You can use the code analyzer to check your code interactively
in the MATLAB Editor while you work.

To verify that continuous code checking is enabled:

1 In MATLAB, select the Home tab and then click Preferences.

2 In the Preferences dialog box, select Code Analyzer.

3 In the Code Analyzer Preferences pane, verify that Enable integrated
warning and error messages is selected.

The code analyzer provides an indicator in the top right of the editor window.
If the indicator is green, the analyzer did not detect code generation issues.

If the indicator is red, the analyzer has detected errors in your code. If it is
orange, it has detected warning. When the indicator is red or orange, a red
or orange marker appears to the right of the code where the error occurs.
Place your pointer over the marker for information about the error. Click
the underlined text in the error message for a more detailed explanation
and suggested actions to fix the error.

17-6

Check Code With the Code Analyzer

Before generating code from your MATLAB code, you must fix the errors
detected by the code analyzer.

17-7

17 Preparing MATLAB® Code for C/C++ Code Generation

Check Code Using the Code Generation Readiness Tool

In this section...

“Run Code Generation Readiness Tool at the Command Line” on page 17-8

“Run Code Generation Readiness Tool from the Current Folder Browser”
on page 17-8

“Run the Code Generation Readiness Tool in a Project” on page 17-9

“See Also” on page 17-9

Run Code Generation Readiness Tool at the
Command Line

1 Navigate to the folder that contains the file that you want to check for
code generation readiness.

2 At the MATLAB command prompt, enter:

coder.screener('filename')

The Code Generation Readiness tool opens for the file named filename,
provides a code generation readiness score, and lists issues that must be
fixed prior to code generation.

Run Code Generation Readiness Tool from the
Current Folder Browser

1 In the current folder browser, right-click the file that you want to check for
code generation readiness.

2 From the context menu, select Check Code Generation Readiness.

The Code Generation Readiness tool opens for the selected file. It
provides a code generation readiness score and lists issues that must be
fixed prior to code generation.

17-8

Check Code Using the Code Generation Readiness Tool

Run the Code Generation Readiness Tool in a Project

1 After you have added entry-point files to the project, if MATLAB Coder
detects code generation issues, it displays a link at the top of the project
window.

2 Click the link to open the Code Generation Readiness tool.

The tool opens and provides a code generation readiness score and lists
issues that must be fixed prior to code generation.

See Also

• “Code Generation Readiness Tool” on page 17-10

17-9

17 Preparing MATLAB® Code for C/C++ Code Generation

Code Generation Readiness Tool

In this section...

“What Information Does the Code Generation Readiness Tool Provide?” on
page 17-10

“Summary Tab” on page 17-11

“Code Structure Tab” on page 17-13

“See Also” on page 17-16

What Information Does the Code Generation
Readiness Tool Provide?
The code generation readiness tool screens MATLAB code for features and
functions that are not supported for code generation. The tool provides a
report that lists the source files that contain unsupported features and
functions. The report also provides an indication of how much work you
must do to make the MATLAB code suitable for code generation. The tool
might not detect all code generation issues. Under certain circumstances, it
might report false errors. Because the tool might not detect all issues, or
might report false errors, generate a MEX function to verify that your code is
suitable for code generation before generating C code.

17-10

Code Generation Readiness Tool

Summary Tab

The Summary tab provides a Code Generation Readiness Score which
ranges from 1 to 5. A score of 1 indicates that the tool has detected issues
that require extensive changes to the MATLAB code to make it suitable for
code generation. A score of 5 indicates that the tool has not detected code
generation issues; the code is ready to use with no or minimal changes.

17-11

17 Preparing MATLAB® Code for C/C++ Code Generation

On this tab, the tool also provides information about:

• MATLAB syntax issues. These issues are reported in the MATLAB editor.
Use the code analyzer to learn more about the issues and how to fix them.

• Unsupported MATLAB function calls.

• Unsupported MATLAB language features, such as recursion, cell arrays,
nested functions, and function handles.

• Unsupported data types.

17-12

Code Generation Readiness Tool

Code Structure Tab

If the code that you are checking calls other MATLAB functions, or you
are checking multiple entry-point functions, the tool displays the Code
Structure Tab.

17-13

17 Preparing MATLAB® Code for C/C++ Code Generation

This tab provides information about the relative size of each file and how
suitable each file is for code generation.

Code Distribution
The Code Distribution pane provides a pie chart that shows the relative
sizes of the files and how suitable each file is for code generation. This
information is useful during the planning phase of a project for estimation
and scheduling purposes. If the report indicates that there are multiple files
not yet suitable for code generation, consider fixing files that require minor
changes before addressing files with significant issues.

Call Tree
The Call Tree pane provides information on the nesting of function calls. For
each called function, the report provides a Code Generation Readiness
score which ranges from 1 to 5. A score of 1 indicates that the tool has
detected issues that require extensive changes to the MATLAB code to make
it suitable for code generation. A score of 5 indicates that the tool has not
detected code generation issues; the code is ready to use with no or minimal
changes. The report also lists the number of lines of code in each file.

Show MATLAB Functions. If you select Show MATLAB Functions, the
report also lists the MATLAB functions called by your function code. For each
of these MATLAB functions, if the function is supported for code generation,
the report sets Code Generation Readiness to Yes.

17-14

Code Generation Readiness Tool

17-15

17 Preparing MATLAB® Code for C/C++ Code Generation

See Also

• “Check Code Using the Code Generation Readiness Tool” on page 17-8

17-16

Unable to Determine Code Generation Readiness

Unable to Determine Code Generation Readiness
Sometimes the code generation readiness tool cannot determine whether
the entry-point functions in your project are suitable for code generation.
The most likely reason is that the tool is unable to find the entry-point files.
Verify that your current working folder is set to the folder that contains your
entry-point files. If it is not, either make this folder your current working
folder or add the folder containing these files to the MATLAB path.

17-17

17 Preparing MATLAB® Code for C/C++ Code Generation

Generate MEX Functions Using the MATLAB Coder Project
Interface

In this section...

“Project Workflow for Generating MEX Functions” on page 17-18

“Generate MEX Functions Using the Project Interface” on page 17-18

“Configure Project Settings” on page 17-24

“Build a MATLAB® Coder™ Project” on page 17-25

“See Also” on page 17-26

Project Workflow for Generating MEX Functions

Step Action Details

1 Set up your MATLAB Coder project. “Creating a New Project” on page 16-3

2 Fix errors detected by the code analyzer. “Fixing Errors Detected at Design Time” on
page 17-4

3 Specify build configuration parameters. “Configure Project Settings” on page 17-24

4 Build the project. “Build a MATLAB® Coder™ Project” on
page 17-25

Generate MEX Functions Using the Project Interface
In this example, you create a MATLAB function that adds two numbers, then
create a MATLAB Coder project for this file. Using the project user interface,
you specify types for the function input parameters, and then generate a
MEX function for the MATLAB code.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 In the same folder, set up a MATLAB Coder project.

17-18

Generate MEX Functions Using the MATLAB® Coder™ Project Interface

a At the MATLAB command line, enter

coder -new mcadd.prj

By default, the project opens in the MATLAB workspace on the right
side.

17-19

17 Preparing MATLAB® Code for C/C++ Code Generation

b On the project Overview tab, click the Add files link, browse to the file
mcadd.m, and click Open to add the file to the project.

17-20

Generate MEX Functions Using the MATLAB® Coder™ Project Interface

The file is displayed on the Overview tab, and both inputs are
undefined.

c On the Overview tab, click the field to the right of the input parameter
u and, from the list of input options, select int16.

17-21

17 Preparing MATLAB® Code for C/C++ Code Generation

d From the list of size options, select 1 x 1 to specify that the input is a
scalar.

17-22

Generate MEX Functions Using the MATLAB® Coder™ Project Interface

e Repeat the previous two steps to specify the input v.

3 In the MATLAB Coder project, click the Build tab.

By default, the Output type is MEX function and the Output file is
mcadd_mex.

17-23

17 Preparing MATLAB® Code for C/C++ Code Generation

4 On this tab, click the Build button to generate a MEX function using the
default project settings.

MATLAB Coder builds the project and, by default, generates a MEX
function, mcadd_mex, in the current folder. MATLAB Coder also generates
other supporting files in a subfolder called codegen/mex/mcadd. MATLAB
Coder uses the name of the MATLAB function as the root name for the
generated files and creates a platform-specific extension for the MEX file,
as described in “Naming Conventions” on page 19-66.

You can now test your MEX function in MATLAB. For more information,
see “Verify MEX Functions in a Project” on page 18-6.

Configure Project Settings

1 On the project Build tab, click theMore settings link to view the project
settings for the selected output type.

Note MEX functions use a different set of configuration parameters than
C/C++ libraries and executables. When you change the output type from
MEX Function or Instrumented MEX Function to C/C++ Static Library,
C/C++ Dynamic Libraryor C/C++ Executable, verify these settings. For
more information, see “Changing Output Type” on page 16-42.

17-24

Generate MEX Functions Using the MATLAB® Coder™ Project Interface

2 In the Project Settings dialog box, select the settings that you want to
apply.

Tip To learn more about the configuration parameters on the current tab
of the Project Settings dialog box, click the Help button.

See Also

• “How to Enable Code Generation Reports in the Project Settings Dialog
Box” on page 19-175

• “In the Project Settings Dialog Box” on page 19-116

• “How to Disable Inlining Globally in the Project Settings Dialog Box” on
page 19-127

• “Generate Traceable Code” on page 19-85

• “Disabling Run-Time Checks in the Project Settings Dialog Box” on page
22-18

Build a MATLAB Coder Project
On the project Build tab, click the Build button to build the project using
the specified settings. While MATLAB Coder builds a project, it displays the
build progress in the Build dialog box. When the build is complete, MATLAB
Coder provides details in the Build Results pane.

Viewing Build Results
The Build Results pane provides information about the most recent build. If
the code generation report is enabled or build errors occur, MATLAB Coder
generates a report that provides detailed information about the most recent
build and provides a link to the report.

To view the report, click the View report link. After a build completes, this
report provides links to your MATLAB code and generated C/C++ files as well
as compile-time type information for the variables in your MATLAB code. If
build errors occur, it lists errors and warnings.

17-25

17 Preparing MATLAB® Code for C/C++ Code Generation

Saving Build Results
When MATLAB Coder builds a project, it displays the build progress and
results in the Build dialog box. To save the build results, click the Save to
log file link and specify the log file location.

See Also

• “Code Generation Reports” on page 19-172

• “Generate Code for Multiple Entry-Point Functions” on page 19-71

• “Generate Code for Global Data” on page 19-77

See Also

• “Generate Code for Multiple Entry-Point Functions” on page 19-71

• “Generate Code for Global Data” on page 19-77

• “Specify Output File Name” on page 16-40

• “Specify Output File Locations” on page 16-41

17-26

Generate MEX Functions at the Command Line

Generate MEX Functions at the Command Line

Command-line Workflow for Generating MEX
Functions

Step Action Details

1 Install prerequisite products. “Installing Prerequisite Products”

2 Set up your C/C++ compiler. “Setting Up the C/C++ Compiler”

3 Set up your file infrastructure. “Paths and File Infrastructure Setup” on
page 19-65

4 Fix errors detected by the code analyzer. “Fixing Errors Detected at Design Time” on
page 17-4

5 Specify build configuration parameters. “Specify Build Configuration Parameters”
on page 19-29

6 Specify properties of primary function
inputs.

“Primary Function Input Specification” on
page 19-40

7 Generate the MEX function using codegen
with suitable command-line options.

“Generating MEX Functions at the
Command Line Using codegen” on page
17-28

Generate MEX Functions at the Command Line
In this example, you use the codegen function to generate a MEX function
from a MATLAB file that adds two inputs. You use the codegen -args option
to specify that both inputs are int16.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 Generate a platform-specific MEX function in the current folder. At the
command line, specify that the two input parameters are int16 using the
-args option. By default, if you do not use the -args option, codegen treats
inputs as real, scalar doubles.

17-27

17 Preparing MATLAB® Code for C/C++ Code Generation

codegen mcadd -args {int16(0), int16(0)}

codegen generates a MEX function, mcadd_mex, in the current folder.
codegen also generates other supporting files in a subfolder called
codegen/mex/mcadd.codegen uses the name of the MATLAB function
as the root name for the generated files and creates a platform-specific
extension for the MEX file, as described in “Naming Conventions” on page
19-66.

Generating MEX Functions at the Command Line
Using codegen
You generate a MEX function at the command line using the codegen function.

The basic command is:

codegen fcn

By default, codegen generates a MEX function in the current folder as
described in “Generate MEX Functions at the Command Line” on page 17-27.

You can modify this default behavior by specifying one or more compiler
options with codegen, separated by spaces on the command line. For more
information, see codegen.

See Also

• “Primary Function Input Specification” on page 19-40

• “MEX Function Generation at the Command Line”

• “Generate Code for Multiple Entry-Point Functions” on page 19-71

• “Generate Code for Global Data” on page 19-77

17-28

Fix Errors Detected at Code Generation Time

Fix Errors Detected at Code Generation Time
When the code generation software detects errors or warnings, it
automatically generates an error report. The error report describes the issues
and provides links to the MATLAB code with errors.

To fix the errors, modify your MATLAB code to use only those MATLAB
features that are supported for code generation. For more information,
see “MATLAB Algorithm Design Basics”. Choose a debugging strategy for
detecting and correcting code generation errors in your MATLAB code. For
more information, see “Debugging Strategies” on page 17-33.

When code generation is complete, the software generates a MEX function
that you can use to test your implementation in MATLAB.

If your MATLAB code calls functions on the MATLAB path, unless the code
generation software determines that these functions should be extrinsic or
you declare them to be extrinsic, it attempts to compile these functions. See
“Resolution of Function Calls in MATLAB Generated Code” on page 13-2.
To get detailed diagnostics, add the %#codegen directive to each external
function that you want codegen to compile.

See Also

• “Code Generation Reports” on page 19-172

• “Why Test MEX Functions in MATLAB?” on page 18-4

• “When to Generate Code from MATLAB Algorithms” on page 2-2

• “Debugging Strategies” on page 17-33

• “Declaring MATLAB Functions as Extrinsic Functions” on page 13-12

17-29

17 Preparing MATLAB® Code for C/C++ Code Generation

Design Considerations When Writing MATLAB Code for
Code Generation

When writing MATLAB code that you want to convert into efficient,
standalone C/C++ code, you must consider the following:

• Data types

C and C++ use static typing. To determine the types of your variables before
use, MATLAB Coder requires a complete assignment to each variable.

• Array sizing

Variable-size arrays and matrices are supported for code generation. You
can define inputs, outputs, and local variables in MATLAB functions to
represent data that varies in size at run time.

• Memory

You can choose whether the generated code uses static or dynamic memory
allocation.

With dynamic memory allocation, you potentially use less memory at the
expense of time to manage the memory. With static memory, you get
best speed, but with higher memory usage. Most MATLAB code takes
advantage of the dynamic sizing features in MATLAB, therefore dynamic
memory allocation typically enables you to generate code from existing
MATLAB code without modifying it much. Dynamic memory allocation also
allows some programs to compile even when upper bounds cannot be found.

Static allocation reduces the memory footprint of the generated code, and
therefore is suitable for applications where there is a limited amount of
available memory, such as embedded applications.

• Speed

Because embedded applications must run in real time, the code must be
fast enough to meet the required clock rate.

To improve the speed of the generated code:

- Choose a suitable C/C++ compiler. The default compiler that MathWorks
supplies with MATLAB for Windows 32-bit platforms is not a good
compiler for performance.

17-30

Design Considerations When Writing MATLAB® Code for Code Generation

- Consider disabling run-time checks.

By default, the code generated for your MATLAB code contains memory
integrity checks and responsiveness checks. Generally, these checks
result in more generated code and slower MEX function execution.
Disabling run-time checks usually results in streamlined generated code
and faster MEX function execution. Disable these checks only if you
have verified that array bounds and dimension checking is unnecessary.

See Also

• “MATLAB Algorithm Design Basics”

• “Data Definition”

• “Variable-Size Data”

• “Bounded Versus Unbounded Variable-Size Data” on page 7-4

• “Control Dynamic Memory Allocation” on page 19-96

• “Control Run-Time Checks” on page 22-17

17-31

17 Preparing MATLAB® Code for C/C++ Code Generation

Running MEX Functions
When you call a MEX function, pass it the same inputs you use for the original
MATLAB algorithm. Do not pass coder.Constant or any of the coder.Type
classes to a MEX function; these classes are for use with the codegen function.

To run a MEX function generated by MATLAB Coder, you must have licenses
for all the toolboxes that the MEX function requires. For example, if you
generate a MEX function from a MATLAB algorithm that uses a Computer
Vision System Toolbox function or System object, to run the MEX function,
you must have a Computer Vision System Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new
version, rebuild the MEX functions.

Debugging MEX Functions
You cannot use the disp and save functions during debugging to inspect the
contents of your MEX function variables. Because these functions are not
supported for code generation, you must declare them as extrinsic functions.
For extrinsic functions, when running the MEX function, MATLAB Coder
calls out to MATLAB to run disp and save, so they save and display the data
found in the base workspace, not the MEX-function workspace.

17-32

Debugging Strategies

Debugging Strategies
Before you perform code verification, choose a debugging strategy for
detecting and correcting noncompliant code in your MATLAB applications,
especially if they consist of a large number of MATLAB files that call each
other’s functions. The following table describes two general strategies, each of
which has advantages and disadvantages.

Debugging
Strategy

What to Do Pros Cons

Bottom-up
verification 1 Verify that your

lowest-level (leaf)
functions are compliant.

2 Work your way up
the function hierarchy
incrementally to compile
and verify each function,
ending with the top-level
function.

• Efficient

• Unlikely to
cause errors

• Easy to isolate
code generation
syntax violations

Requires application tests
that work from the bottom up

17-33

17 Preparing MATLAB® Code for C/C++ Code Generation

Debugging
Strategy

What to Do Pros Cons

Top-down
verification 1 Declare functions called

by the top-level function
to be extrinsic so that
MATLAB Coder does
not compile them. See
“Declaring MATLAB
Functions as Extrinsic
Functions” on page 13-12.

2 Verify that your top-level
function is compliant.

3 Work your way down
the function hierarchy
incrementally by
removing extrinsic
declarations one by one to
compile and verify each
function, ending with the
leaf functions.

You retain your
top-level tests

Introduces extraneous code
that you must remove after
code verification, including:
• Extrinsic declarations

• Additional assignment
statements as required
to convert opaque values
returned by extrinsic
functions to nonopaque
values (see “Working with
mxArrays” on page 13-17).

17-34

18

Testing MEX Functions in
MATLAB

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Why Test MEX Functions in MATLAB?” on page 18-4

• “Running MEX Functions” on page 18-5

• “Verify MEX Functions in a Project” on page 18-6

• “Verify MEX Functions at the Command Line” on page 18-8

• “Debug Run-Time Errors” on page 18-9

18 Testing MEX Functions in MATLAB®

Workflow for Testing MEX Functions in MATLAB

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

18-2

Workflow for Testing MEX Functions in MATLAB®

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Why Test MEX Functions in MATLAB?” on page 18-4

• “Debug Run-Time Errors” on page 18-9

• “C/C++ Code Generation” on page 19-5

• “Accelerate MATLAB Algorithms” on page 22-15

18-3

18 Testing MEX Functions in MATLAB®

Why Test MEX Functions in MATLAB?
Before generating C/C++ code for your MATLAB code, it is a best practice to
test the MEX function to verify that it provides the same functionality as
the original MATLAB code. To do this testing, run the MEX function using
the same inputs as you used to run the original MATLAB code and compare
the results. For more information about how to test a MEX function in a
project, see “Verify MEX Functions in a Project” on page 18-6. For more
information on how to test a MEX function at the command line, see “Verify
MEX Functions at the Command Line” on page 18-8.

In addition, running the MEX function in MATLAB before generating code
enables you to detect and fix run-time errors that are much harder to diagnose
in the generated code. If you encounter run-time errors in your MATLAB
functions, fix them before generating code. For more information, see “Debug
Run-Time Errors” on page 18-9.

When you run your MEX function in MATLAB, by default, the following
run-time checks execute :

• Memory integrity checks. These checks perform array bounds checking,
dimension checking, and detect violations of memory integrity in code
generated for MATLAB functions. If a violation is detected, MATLAB stops
execution and provides a diagnostic message.

• Responsiveness checks in code generated for MATLAB functions. These
checks enable periodic checks for Ctrl+C breaks in code generated for
MATLAB functions, allowing you to terminate execution with Ctrl+C.

For more information, see “Control Run-Time Checks” on page 22-17.

18-4

Running MEX Functions

Running MEX Functions
When you call a MEX function, pass it the same inputs you use for the original
MATLAB algorithm. Do not pass coder.Constant or any of the coder.Type
classes to a MEX function; these classes are for use with the codegen function.

To run a MEX function generated by MATLAB Coder, you must have licenses
for all the toolboxes that the MEX function requires. For example, if you
generate a MEX function from a MATLAB algorithm that uses a Computer
Vision System Toolbox function or System object, to run the MEX function,
you must have a Computer Vision System Toolbox license.

When you upgrade MATLAB, before running MEX functions with the new
version, rebuild the MEX functions.

Debugging MEX Functions
You cannot use the disp and save functions during debugging to inspect the
contents of your MEX function variables. Because these functions are not
supported for code generation, you must declare them as extrinsic functions.
For extrinsic functions, when running the MEX function, MATLAB Coder
calls out to MATLAB to run disp and save, so they save and display the data
found in the base workspace, not the MEX-function workspace.

18-5

18 Testing MEX Functions in MATLAB®

Verify MEX Functions in a Project

In this section...

“Using Test Files That Call Only MATLAB Functions” on page 18-6

“Using Test Files That Call MEX Functions” on page 18-7

Using Test Files That Call Only MATLAB Functions
If you have a test file that calls only your original entry-point MATLAB
function, use the following procedure. A test file can be either a MATLAB
function or a script. To use this procedure, you should verify that it calls at
least one entry-point function. The generated MEX function must be in the
same folder as the entry-point functions.

Selecting the Redirect entry-point calls to MEX function option directs
MATLAB Coder software to replace calls to the MATLAB function with calls
to the generated MEX function. This capability allows you to compare the
behavior of the MEX function with that of the original function.

If your test file calls the generated MEX function, do not follow this procedure.
Instead, follow the procedure in “Using Test Files That Call MEX Functions”
on page 18-7.

1 On the project Build tab Verification panel, click the button to add a
test file. Alternatively, if you have already added test files to the project,
select one from the list.

2 Run the test file calling the original MATLAB algorithm.

a Clear Redirect entry-point calls to MEX function.

b Click the Run button.

The test file runs and calls your original MATLAB algorithm.

3 Verify that the test results are as expected.

4 Run the test file calling the MEX function instead of the original MATLAB
algorithm.

18-6

Verify MEX Functions in a Project

a Select Redirect entry-point calls to MEX function.

b Click the Run button.

The project builds the MEX function. The test file runs and automatically
replaces calls to your original MATLAB algorithm with calls to the
generated MEX function.

5 Compare the results of the two runs to verify that the MEX function
provides the same functionality as the original MATLAB algorithm.

Using Test Files That Call MEX Functions
If you have a test file that calls the generated MEX function, use the following
procedure. If your test file calls both the original MATLAB function and the
generated MEX function, you can also use this procedure.

A test file can be either a MATLAB function or a script. To use this procedure,
you should verify that it calls at least one MEX function. The MEX function
must be in the same folder as the entry-point functions.

1 On the project Build tab Verification panel, click the button to add a
test file. Alternatively, if you have already added test files to the project,
select one from the list.

2 Run the test file.

a Clear Redirect entry-point calls to MEX function.

Because the test file already calls the MEX function, you do not want
MATLAB Coder to redirect entry-point function calls.

b Click the Run button.

The project builds the MEX function. The test file runs and calls the
generated MEX function. If applicable, it also calls the original MATLAB
algorithm.

3 Use the results of this run to verify that the MEX function provides the
same functionality as the original MATLAB algorithm.

18-7

18 Testing MEX Functions in MATLAB®

Verify MEX Functions at the Command Line
If you have a test file that calls your original MATLAB function, use
coder.runTest to verify the MEX function at the command line.
coder.runTest runs the test file replacing calls to the original MATLAB
function with calls to the generated MEX function. If errors occur during the
run with coder.runTest, call stack information is available for debugging
purposes. For more information, see the coder.runTest function reference
information and “Verifying the MEX Function” in the MATLAB Coder “C
Code Generation at the Command Line” tutorial.

18-8

Debug Run-Time Errors

Debug Run-Time Errors

In this section...

“Viewing Errors in the Run-Time Stack” on page 18-9

“Handling Run-Time Errors” on page 18-11

If you encounter run-time errors in your MATLAB functions, the run-time
stack appears automatically in the MATLAB command window. Use the error
message and stack information to learn more about the source of the error and
then either fix the issue or add error-handling code. For more information, see
“Viewing Errors in the Run-Time Stack” on page 18-9“Handling Run-Time
Errors” on page 18-11.

Viewing Errors in the Run-Time Stack

About the Run-Time Stack
The run-time stack is enabled by default for MEX code generation from
MATLAB. Use the error message and the following stack information to learn
more about the source of the error:

• The name of the function that generated the error

• The line number of the attempted operation

• The sequence of function calls that led up to the execution of the function
and the line at which each of these function calls occurred

18-9

18 Testing MEX Functions in MATLAB®

Example Run-Time Stack Trace. This example shows the run-time stack
trace for MEX function mlstack_mex:

mlstack_mex(-1)

Index exceeds matrix dimensions. Index
value -1 exceeds valid range [1-4] of
array x.

Error in mlstack>mayfail (line 31)
y = x(u);

Error in mlstack>subfcn1 (line 5)
switch (mayfail(u))

Error in mlstack (line 2)
y = subfcn1(u);

The stack trace provides the following information:

• The type of error.

??? Index exceeds matrix dimensions.
Index value -1 exceeds valid range [1-4] of array x.

• Where the error occurred.

Error in ==>mlstack>mayfail at 31
y = x(u);

• The function call sequence prior to the failure.

Error in ==> mlstack>subfcn1 at 5
switch (mayfail(u))

Error in ==> mlstack at 2
y = subfcn1(u);

When to Use the Run-Time Stack
The run-time stack is useful during debugging to help you find the source of
run-time errors. However, when the stack is enabled, the generated code

18-10

Debug Run-Time Errors

contains instructions for maintaining the run-time stack, which might slow
the run time. Consider disabling the run-time stack for faster run time.

How to Disable the Run-Time Stack. You can disable the run-time stack
by disabling the memory integrity checks as described in “How to Disable
Run-Time Checks” on page 22-18.

Caution Before disabling the memory integrity checks, you should verify
that all array bounds and dimension checking is unnecessary.

Handling Run-Time Errors
The code generation software propagates error ID’s. If you throw an error or
warning in your MATLAB code, use the try-catch statement in your test
bench code to examine the error information and attempt to recover, or clean
up and abort. For example, for the function in “Example Run-Time Stack
Trace” on page 18-10, create a test script containing:

try
mlstack_mex(u)

catch
% Add your error handling code here

end

For more information, see “The try/catch Statement”.

18-11

18 Testing MEX Functions in MATLAB®

18-12

19

Generating C/C++ Code
from MATLAB Code

• “Code Generation Workflow” on page 19-3

• “C/C++ Code Generation” on page 19-5

• “Generating C/C++ Static Libraries from MATLAB Code” on page 19-7

• “Generating C/C++ Dynamically Linked Libraries from MATLAB Code” on
page 19-11

• “Generating Standalone C/C++ Executables from MATLAB Code” on page
19-15

• “Build Setting Configuration” on page 19-21

• “Share Build Configuration Settings” on page 19-37

• “Primary Function Input Specification” on page 19-40

• “Define Input Properties Programmatically in the MATLAB File” on page
19-52

• “Speed Up Compilation” on page 19-63

• “Paths and File Infrastructure Setup” on page 19-65

• “Generate Code for Multiple Entry-Point Functions” on page 19-71

• “Generate Code for Global Data” on page 19-77

• “Generation of Traceable Code” on page 19-84

• “Generate Code for Enumerated Types” on page 19-94

• “Generate Code for Variable-Size Data” on page 19-95

• “Code Generation for MATLAB Classes” on page 19-115

19 Generating C/C++ Code from MATLAB® Code

• “How MATLAB® Coder™ Partitions Generated Code” on page 19-116

• “Customize the Post-Code-Generation Build Process” on page 19-130

• “Code Generation Reports” on page 19-172

• “Troubleshooting” on page 19-192

• “Package Code For Use in Other Development Environments” on page
19-193

19-2

Code Generation Workflow

Code Generation Workflow

19-3

19 Generating C/C++ Code from MATLAB® Code

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Build Setting Configuration” on page 19-21

• “C/C++ Code Generation” on page 19-5

19-4

C/C++ Code Generation

C/C++ Code Generation
Using MATLAB Coder, you can generate standalone C/C++ static and
dynamic libraries and C/C++ executables. If you specify C++, MATLAB
Coder wraps the C code into .cpp files so that you can use a C++ compiler
and interface with external C++ applications. It does not generate C++
classes. By default, if MATLAB Coder does not detect errors, it generates a
platform-specific MEX function in the current folder.

To learn how to generate... See...

C/C++ static libraries from your
MATLAB code

“Generating C/C++ Static Libraries
from MATLAB Code” on page 19-7

C/C++ dynamic libraries from your
MATLAB code

“Generating C/C++ Dynamically
Linked Libraries from MATLAB
Code” on page 19-11

C/C++ executables from your
MATLAB code

“Generating Standalone C/C++
Executables from MATLAB Code”
on page 19-15

MEX functions from your MATLAB
code

“Generate MEX Functions Using
the MATLAB® Coder™ Project
Interface” on page 17-18

If errors occur, MATLAB Coder does not generate code, but produces an error
report and provides a link to this report. For more information, see “Code
Generation Reports” on page 19-172.

Specify Custom Files to Build
In addition to your MATLAB file, you can specify the following types of custom
files to include in the build for standalone C/C++ code generation.

File Extension Description

.c Custom C file

.cpp Custom C++ file

.h Custom header file

19-5

19 Generating C/C++ Code from MATLAB® Code

File Extension Description

.o , .obj Custom object file

.a , .lib, .so Library

.tmf Template makefile for custom
MATLAB Coder builds

19-6

Generating C/C++ Static Libraries from MATLAB® Code

Generating C/C++ Static Libraries from MATLAB Code

In this section...

“Generate a C Static Library Using the Project Interface” on page 19-7

“Generate a C Static Library at the Command Line” on page 19-10

Generate a C Static Library Using the Project Interface
This example shows how to generate a C static library from MATLAB code
using a MATLAB Coder project.

In this example, you create a MATLAB function that adds two numbers.
You then create a MATLAB Coder project. Use the project user interface to
generate a C static library for the MATLAB code.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 In the same folder, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new mcadd.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link. Browse to the file
mcadd.m. Click OK to add the file to the project.

The file is displayed on the Overview tab. Both inputs are undefined.

3 Define the type of input u.

a On the Overview tab, click the field to the right of the input parameter
u and, from the list of input options, select int16.

19-7

19 Generating C/C++ Code from MATLAB® Code

b From the list of size options, select 1 x 1 to specify that the input is a
scalar.

19-8

Generating C/C++ Static Libraries from MATLAB® Code

4 Repeat the previous step for input v.

5 In the MATLAB Coder project, click the Build tab.

6 On this tab, set the Output type to C/C++ Static library.

The default output file name is mcadd.

7 Click Build to generate a library using the default project settings.

MATLAB Coder builds the project and generates a C static library and
supporting files in the default folder, codegen/lib/mcadd. It generates
the minimal set of #include statements for header files required by the
selected code replacement library.

19-9

19 Generating C/C++ Code from MATLAB® Code

Generate a C Static Library at the Command Line
This example shows how to generate a C static library from MATLAB code
at the command line using the codegen function.

1 In a local writable folder, create a MATLAB file, mcadd.m, that contains:

function y = mcadd(u,v) %#codegen
y = u + v;

2 Using the config:lib option, generate C library files. Using the -args
option, specify that the first input is a 1-by-4 vector of unsigned 16-bit
integers and that the second input is a double-precision scalar.

codegen -config:lib mcadd -args {zeros(1,4,'uint16'),0}

MATLAB Coder generates a C static library with the default name, mcadd,
and supporting files in the default folder, codegen/lib/mcadd. It generates
the minimal set of #include statements for header files required by the
selected code replacement library.

19-10

Generating C/C++ Dynamically Linked Libraries from MATLAB® Code

Generating C/C++ Dynamically Linked Libraries from
MATLAB Code

In this section...

“Dynamic Libraries Generated by MATLAB® Coder™” on page 19-11

“Generate a C Dynamically Linked Library (DLL) Using the Project
Interface” on page 19-11

“Generate a C Dynamic Library at the Command Line” on page 19-13

Dynamic Libraries Generated by MATLAB Coder
By default, when MATLAB Coder generates a dynamic library (DLL):

• The DLL is suitable for the platform that you are working on.

• The DLL uses the release version of the C run-time library.

• The DLL linkage conforms to the target language, by default, C. If you set
the target language to C++, the linkage conforms to C++.

• When the target language is C, the generated header files explicitly declare
the exported functions to be extern "C" to simplify integration of the DLL
into C++ applications.

If you generate a DLL that uses dynamically allocated variable-size data,
MATLAB Coder automatically provides exported utility functions to interact
with this data in the generated code. For more information, see “Utility
Functions for Creating emxArray Data Structures” on page 7-21.

Generate a C Dynamically Linked Library (DLL) Using
the Project Interface
This example shows how to generate a C DLL from MATLAB code using a
MATLAB Coder project.

In this example, you create a MATLAB function that generates a random
scalar value. You then create a MATLAB Coder project. Use the project user
interface to generate a C dynamic library for the MATLAB code.

19-11

19 Generating C/C++ Code from MATLAB® Code

1 Write two MATLAB functions, ep1 takes one input, a single scalar, and
ep2 takes two inputs, both double scalars. In a local writable folder, create
a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

In the same folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

2 In the same folder as the ep1 and ep2 files, set up a MATLAB Coder
project. At the MATLAB command line, enter:

coder -new ep.prj

By default, the project opens in the MATLAB workspace on the right side.

3 On the project Overview tab, click the Add files link and browse to the
file ep1.m . Click OK to add the file to the project.

The file is displayed on the Overview tab. MATLAB Coder indicates that
input u is undefined.

4 Define the type of input u.

a On the Overview tab, click the field to the right of the input parameter
u and then, from the list of input options, select single.

b From the list of size options, select 1 x 1 to specify that u is a scalar.

5 On the project Overview tab, click the Add files link and browse to the
file ep2.m . Click OK to add the file to the project.

The file is displayed on the Overview tab. MATLAB Coder indicates that
inputs u and v are undefined.

6 Define the type of input u.

a On the Overview tab, click the field to the right of the input parameter
u and then, from the list of input options, select double.

b From the list of size options, select 1 x 1 to specify that u is a scalar.

19-12

Generating C/C++ Dynamically Linked Libraries from MATLAB® Code

7 Repeat the previous step for input v.

8 In the MATLAB Coder project, click the Build tab.

9 On the Build tab, set the Output type to C/C++ Dynamic Library.

10 On the Build tab, click the Build button to generate a library using these
project settings.

On Microsoft® Windows systems, MATLAB Coder generates a C
dynamic library, ep1.dll, and supporting files, in the default folder,
codegen/dll/ep1. It generates the minimal set of #include statements for
header files required by the selected code replacement library. On Linux®

and Macintosh systems, it generates a shared object (.so) file. The DLL
linkage conforms to the target language, in this example, C. If you set the
target language to C++, the linkage conforms to C++.

Generate a C Dynamic Library at the Command Line
This example shows how to generate a C dynamic library from MATLAB code
at the command line using the codegen function.

1 Write two MATLAB functions, ep1 takes one input, a single scalar, and
ep2 takes two inputs, both double scalars. In a local writable folder, create
a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

In the same folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

2 Generate the C dynamic library.

codegen -config:dll ep1 -args single(0) ep2 -args {0,0}

On Microsoft Windows systems, codegen generates a C dynamic library,
ep1.dll, and supporting files, in the default folder, codegen/dll/ep1. It
generates the minimal set of #include statements for header files required
by the selected code replacement library. On Linux and Macintosh systems,

19-13

19 Generating C/C++ Code from MATLAB® Code

it generates a shared object (.so) file. The DLL linkage conforms to the
target language, in this example, C. If you set the target language to C++,
the linkage conforms to C++.

Note The default target language is C. To change the target language to
C++, see “Specify a Language for Code Generation” on page 19-24.

19-14

Generating Standalone C/C++ Executables from MATLAB® Code

Generating Standalone C/C++ Executables from MATLAB
Code

In this section...

“Generate a C Executable Using the Project Interface” on page 19-15

“Generate a C Executable at the Command Line” on page 19-17

“Specifying main Functions for C/C++ Executables” on page 19-19

“Specify main Functions” on page 19-19

Generate a C Executable Using the Project Interface
In this example, you create a MATLAB function that generates a random
scalar value and a main C function that calls this MATLAB function. You
then create a MATLAB Coder project. Use the project user interface to specify
types for the function input parameters, specify the main function, and
generate a C executable for the MATLAB code.

1 Write a MATLAB function, coderand, that generates a random scalar
value from the standard uniform distribution on the open interval (0,1):

function r = coderand() %#codegen
r = rand();

2 Write a main C function, c:\myfiles\main.c, that calls coderand. For
example:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "coderand.h"
#include "coderand_initialize.h"
#include "coderand_terminate.h"

int main()
{

coderand_initialize();

19-15

19 Generating C/C++ Code from MATLAB® Code

printf("coderand=%g\n", coderand());

coderand_terminate();

return 0;
}

Note In this example, because the default file partitioning
method is to generate one file for each MATLAB file, you include
coderand_initialize.h and coderand_terminate.h. If your file
partitioning method is set to generate one file for all functions, do not
include coderand_initialize.h and coderand_terminate.h.

3 In the same folder as the coderand file, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new coderand.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link and browse to the
file coderand.m . Click OK to add the file to the project.

The file is displayed on the Overview tab. MATLAB Coder indicates
that the coderand function has no inputs.

4 In the MATLAB Coder project, click the Build tab.

a Set the Output type to C/C++ Executable.

b Set the output file name to coderand_exe.

5 On the project Build tab, click the More settings link.

6 On the Project Settings dialog box Custom Code tab, under Additional
files and directories to be built, set:

a Source files to main.c, which is the name of the C/C++ source file that
contains the main function.

19-16

Generating Standalone C/C++ Executables from MATLAB® Code

b Include directories to the location of main.c: c:\myfiles.

c Close the dialog box.

Note When you are building an executable, you must specify the main
function. For more information, see “Specifying main Functions for C/C++
Executables” on page 19-19.

7 On the Build tab, click the Build button to generate a library using the
default project settings.

MATLAB Coder compiles and links the main function with the C code
that it generates for the project and, in the current folder, generates an
executable, coderand_exe. It generates supporting files in the default
folder, codegen/exe/coderand. MATLAB Coder generates the minimal
set of #include statements for header files required by the selected code
replacement library.

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Build Setting Configuration” on page 19-21

• “C/C++ Code Generation” on page 19-5

• “Optimization Strategies” on page 25-3

Generate a C Executable at the Command Line
In this example, you create a MATLAB function that generates a random
scalar value and a main C function that calls this MATLAB function. You
then specify types for the function input parameters, specify the main
function, and generate a C executable for the MATLAB code.

1 Write a MATLAB function, coderand, that generates a random scalar
value from the standard uniform distribution on the open interval (0,1):

19-17

19 Generating C/C++ Code from MATLAB® Code

function r = coderand() %#codegen
r = rand();

2 Write a main C function, c:\myfiles\main.c, that calls coderand. For
example:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "coderand.h"
#include "coderand_initialize.h"
#include "coderand_terminate.h"

int main()
{

coderand_initialize();

printf("coderand=%g\n", coderand());

coderand_terminate();

return 0;
}

Note In this example, because the default file partitioning
method is to generate one file for each MATLAB file, you include
coderand_initialize.h and coderand_terminate.h . If your file
partitioning method is set to generate one file for all functions, do not
include coderand_initialize.h and coderand_terminate.h .

3 Configure your code generation parameters to include the main C function
and then generate the C executable:

cfg = coder.config('exe');
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg coderand

19-18

Generating Standalone C/C++ Executables from MATLAB® Code

codegen generates a C executable, coderand.exe, in the current folder. It
generates supporting files in the default folder, codegen/exe/coderand.
codegen generates the minimal set of #include statements for header files
required by the selected code replacement library.

Specifying main Functions for C/C++ Executables
When you generate an executable, you must provide a main function. If you
are generating a C executable, provide a C file, main.c. If you are generating
a C++ executable, provide a C++ file, main.cpp. Verify that the folder
containing the main function has only one main file. Otherwise, main.c takes
precedence over main.cpp, which causes an error when generating C++
code. You can specify the main file from the project settings dialog box, the
command line, or the Code Generation dialog box.

When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder automatically generates an initialize function
and a terminate function.

• If your file partitioning method is set to generate one file for each MATLAB
file, you must include the initialize and terminate header functions in
main.c. Otherwise, do not include them in main.c.

• You must call these functions along with the C/C++ function. For more
information, see “Calling Initialize and Terminate Functions” on page 21-7.

Specify main Functions

Specifying main Functions in the Project Settings Dialog Box

1 On the project Build tab, click theMore settings link to open the Project
Settings dialog box.

2 On the Custom Code tab, set:

a Additional source files to the name of the C/C++ source file that
contains the main function. For example, main.c. For more information,
see “Specifying main Functions for C/C++ Executables” on page 19-19.

b Additional include directories to the location of main.c. For
example, c:\myfiles.

19-19

19 Generating C/C++ Code from MATLAB® Code

Specifying main Functions at the Command Line
Set the CustomSource and CustomInclude properties of the code generation
configuration object (see “Working with Configuration Objects” on page
19-31). The CustomInclude property indicates the location of C/C++ files
specified by CustomSource.

1 Create a configuration object for an executable:

cfg = coder.config('exe');

2 Set the CustomSource property to the name of the C/C++ source file that
contains the main function. (For more information, see “Specifying main
Functions for C/C++ Executables” on page 19-19.) For example:

cfg.CustomSource = 'main.c';

3 Set the CustomInclude property to the location of main.c. For example:

cfg.CustomInclude = 'c:\myfiles';

4 Generate the C/C++ executable using the command line options. For
example, if myFunction takes one input parameter of type double:

codegen -config cfg myMFunction -args {0}

MATLAB Coder compiles and links the main function with the C/C++ code
that it generates from myMFunction.m.

19-20

Build Setting Configuration

Build Setting Configuration

In this section...

“Specify Output Type” on page 19-21

“Specify a Language for Code Generation” on page 19-24

“Specify Data Type Used in Generated Code” on page 19-25

“Specify Output File Name” on page 19-26

“Specify Output File Locations” on page 19-27

“Parameter Specification Methods” on page 19-29

“Specify Build Configuration Parameters” on page 19-29

Specify Output Type

Output Types
MATLAB Coder can generate code for the following output types:

• MEX function

• Instrumented MEX function

• Standalone C/C++ code and compile it to a static library

• Standalone C/C++ code and compile it to a dynamically-linked library

• Standalone C/C++ code and compile it to an executable

Note When you generate an executable, you must provide a C/C++ file
that contains the main function, as described in “Specifying main Functions
for C/C++ Executables” on page 19-19.

Location of Generated Files
By default, MATLAB Coder generates files in output folders based on your
output type. For more information, see “Generated Files and Locations” on
page 19-122.

19-21

19 Generating C/C++ Code from MATLAB® Code

Note Each time MATLAB Coder generates the same type of output for the
same code or project, it removes the files from the previous build. If you
want to preserve files from a build, copy them to a different location before
starting another build.

Specifying the Output Type Using the MATLAB Coder Project
Interface
On the MATLAB Coder project Build tab, set Output type to one of the
available output types:

• MEX Function (default)

• Instrumented MEX Function

• C/C++ Static Library

• C/C++ Dynamic Library

• C/C++ Executable

MEX functions use a different set of configuration parameters than C/C++
libraries and executables. When you switch the output type between MEX
Function or Instrumented MEX Function and C/C++ Static Library,
C/C++ Dynamic Library or C/C++ Executable, verify these settings. For
more information, see “Changing Output Type” on page 16-42.

Specifying the Output Type at the Command Line
Call codegen with the -config option. For example, suppose you have a
primary function foo that takes no input parameters. The following table
shows how to specify different output types when compiling foo. If a primary
function has input parameters, you must specify these inputs. For more
information, see “Primary Function Input Specification” on page 19-40.

Note C is the default language for code generation with MATLAB Coder.
To generate C++ code, see “Specify a Language for Code Generation” on
page 19-24.

19-22

Build Setting Configuration

To Generate: Use This Command:

MEX function using the default
code generation options codegen foo

MEX function specifying code
generation options cfg = coder.config('mex');

% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and
compile it to a library using the
default code generation options

codegen -config:lib foo

Standalone C/C++ code and
compile it to a library specifying
code generation options

cfg = coder.config('lib');
% Set configuration parameters, for example,
% enable a code generation report
cfg.GenerateReport=true;
% Call codegen, passing the configuration
% object
codegen -config cfg foo

Standalone C/C++ code and
compile it to an executable using
the default code generation
options and specifying the
main.c file at the command line

codegen -config:exe main.c foo

Note You must specify a main function for generating a
C/C++ executable. See “Specifying main Functions for C/C++
Executables” on page 19-19

19-23

19 Generating C/C++ Code from MATLAB® Code

To Generate: Use This Command:

Standalone C/C++ code and
compile it to an executable
specifying code generation
options

cfg = coder.config('exe');
% Set configuration parameters, for example,
% specify main file
cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';
codegen -config cfg foo

Note You must specify a main function for generating a
C/C++ executable. See “Specifying main Functions for C/C++
Executables” on page 19-19

Specify a Language for Code Generation

• “Specifying a Language for Code Generation in the Project Settings Dialog
Box” on page 19-24

• “Specifying a Language for Code Generation at the Command Line” on
page 19-25

MATLAB Coder can generate C or C++ libraries and executables. C is the
default language. You can specify a language explicitly from the project
settings dialog box or at the command line.

Specifying a Language for Code Generation in the Project
Settings Dialog Box

1 Select a suitable compiler for your target language.

2 On the MATLAB Coder project Build tab, click theMore settings link to
open the Project Settings dialog box.

3 On the All Settings tab, in the Advanced group, set Language to C or
C++.

19-24

Build Setting Configuration

Note If you specify C++, MATLAB Coder wraps the C code into .cpp
files so that you can use a C++ compiler and interface with external C++
applications. It does not generate C++ classes.

Specifying a Language for Code Generation at the Command
Line

1 Select a suitable compiler for your target language.

2 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

3 Set the TargetLang property to 'C' or 'C++'. For example:

cfg.TargetLang = 'C++';

Note If you specify C++, MATLAB Coder wraps the C code into .cpp
files. You can then use a C++ compiler and interface with external C++
applications. MATLAB Coder does not generate C++ classes.

See Also.

• “Working with Configuration Objects” on page 19-31

• “Setting Up the C/C++ Compiler”

Specify Data Type Used in Generated Code

• “Specify Data Type in the Project Settings Dialog Box” on page 19-26

• “Specify Data Type at the Command Line” on page 19-26

MATLAB Coder can use built-in C data types or predefined types from
rtwtypes.h in generated code. By default, the generated code uses built-in C
types when declaring variables.

19-25

19 Generating C/C++ Code from MATLAB® Code

You can explicitly specify the data type used in generated code in the project
settings dialog box or at the command line.

Specify Data Type in the Project Settings Dialog Box

1 On the Build tab Settings pane, set the Output type to C/C++ Static
Library, C/C++ Dynamic Library, or C/C++ Executable (depending on
your requirements).

2 Click theMore settings link to open the Project Settings dialog box.

3 To use built-in C types, on the Code Appearance tab, set Data Type
Replacement to Use built-in C data types in the generated code.
To use predefined types from rtwtypes.h, set Data Type Replacement
to Use MathWorks typedefs in the generated code.

Specify Data Type at the Command Line

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib','dll' or 'exe' (depending on your requirements). For
example:

cfg = coder.config('lib');

2 To use built-in C types, set the DataTypeReplacement property to
'CBuiltIn'.

cfg.DataTypeReplacement = 'CBuiltIn';

To use predefined types from rtwtypes.h, set the DataTypeReplacement
property to 'CoderTypedefs'.

Specify Output File Name

Specify Output File Name in a Project
On the project Build tab, in the Output file field, enter the file name. The
file name can include an existing path.

19-26

Build Setting Configuration

Note Do not put spaces in the file name.

By default, if the name of the first entry-point MATLAB file is fcn1, the
output file name is:

• fcn1 for C/C++ libraries and executables.

• fcn1_mex for MEX functions.

By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• project_folder is your current project folder

• target is:

- mex for MEX functions

- lib for static C/C++ libraries

- dll for dynamic C/C++ libraries

- exe for C/C++ executables

Command Line Alternative
Use the codegen function -o option.

Specify Output File Locations

Specifying Output File Location in a Project
The output file location should not contain:

• Spaces, as this can lead to code generation failures in certain operating
system configurations.

• Non 7-bit ASCII characters, such as Japanese characters.

19-27

19 Generating C/C++ Code from MATLAB® Code

1 On the project Build tab, click More settings.

2 In the Project Settings dialog box, click the Paths tab.

The default setting for the Build Folder field is A subfolder of the
project folder. By default, MATLAB Coder generates files in the folder
project_folder/codegen/target/fcn1:

• fcn1 is the name of the first entry-point file

• target is:

– mex for MEX functions

– lib for static C/C++ libraries

– dll for dynamically-linked C/C++ libraries

– exe for C/C++ executables

3 To change the output location, you can either:

• Set Build Folder to A subfolder of the current MATLAB working
folder

MATLAB Coder generates files in the
MATLAB_working_folder/codegen/target/fcn1 folder

• Set Build Folder to Specified folder. In the Build folder name
field, provide the path to the folder.

Command Line Alternative
Use the codegen function -d option.

19-28

Build Setting Configuration

Parameter Specification Methods

If you are using... Use... Details

A MATLAB Coder project The Project Settings dialog box “Specifying Build
Configuration Parameters
in the Project Settings Dialog
Box” on page 19-29

codegen at the command line
and want to specify a small
number of parameters

codegen in build scripts

Configuration objects “Specifying Build
Configuration Parameters
at the Command Line Using
Configuration Objects” on
page 19-30

codegen at the command line
and want to specify a large
number of parameters

Configuration object dialog
boxes

“Specifying Build
Configuration Parameters
at the Command Line Using
Dialog Boxes” on page 19-36

Specify Build Configuration Parameters

• “Specifying Build Configuration Parameters in the Project Settings Dialog
Box” on page 19-29

• “Specifying Build Configuration Parameters at the Command Line Using
Configuration Objects” on page 19-30

• “Specifying Build Configuration Parameters at the Command Line Using
Dialog Boxes” on page 19-36

You can specify build configuration parameters from the MATLAB Coder
project settings dialog box, the command line, or configuration object dialog
boxes.

Specifying Build Configuration Parameters in the Project
Settings Dialog Box

1 On the MATLAB Coder project Build tab, click More settings.

19-29

19 Generating C/C++ Code from MATLAB® Code

The Project Settings dialog box opens. This dialog box provides the set of
configuration parameters applicable to the output type that you select.

Note MEX functions use a different set of configuration parameters than
C/C++ libraries and executables. When you switch the output type between
MEX Function or Instrumented MEX Function and C/C++ Static
Library , C/C++ Dynamic Library or C/C++ Executable, verify these
settings. For more information, see “Changing Output Type” on page 16-42.

2 Modify the parameters as required. For more information about parameters
on a tab, click the Help button.

Changes to the parameter settings take place immediately.

3 After specifying the build parameters, you can generate code by clicking
the Build button on the same tab.

Specifying Build Configuration Parameters at the Command
Line Using Configuration Objects

Types of Configuration Objects. The codegen function uses configuration
objects to customize your environment for code generation. The following
table lists the available configuration objects.

Configuration Object Description

coder.CodeConfig If no Embedded Coder license is available or you
disable use of the Embedded Coder license, specifies
parameters for C/C++ library or executable generation.

For more information, see the class reference
information for coder.CodeConfig.

coder.EmbeddedCodeConfig If an Embedded Coder license is available, specifies
parameters for C/C++ library or executable generation.

For more information, see the class reference
information for coder.EmbeddedCodeConfig.

19-30

Build Setting Configuration

Configuration Object Description

coder.HardwareImplementation Specifies parameters of the target hardware
implementation. If not specified, codegen generates
code that is compatible with the MATLAB host
computer.

For more information, see the class reference
information for coder.HardwareImplementation.

coder.MexCodeConfig Specifies parameters for MEX code generation.

For more information, see the class reference
information for coder.MexCodeConfig.

Working with Configuration Objects. To use configuration objects to
customize your environment for code generation:

1 In the MATLAB workspace, define configuration object variables, as
described in “Creating Configuration Objects” on page 19-33.

For example, to generate a configuration object for C static library
generation:

cfg = coder.config('lib');
% Returns a coder.CodeConfig object if no
% Embedded Coder license available.
% Otherwise, returns a coder.EmbeddedCodeConfig object.

2 Modify the parameters of the configuration object as required, using one of
these methods:

• Interactive commands, as described in “Specifying Build Configuration
Parameters at the Command Line Using Configuration Objects” on
page 19-30

• Dialog boxes, as described in “Specifying Build Configuration Parameters
at the Command Line Using Dialog Boxes” on page 19-36

3 Call the codegen function with the -config option. Specify the
configuration object as its argument.

19-31

19 Generating C/C++ Code from MATLAB® Code

The -config option instructs codegen to generate code for the target,
based on the configuration property values. In the following example,
codegen generates a C static library from a MATLAB function, foo, based
on the parameters of a code generation configuration object, cfg, defined
in the first step:

codegen -config cfg foo

The -config option specifies the type of output that you want to build — in
this case, a C static library. For more information, see codegen.

19-32

Build Setting Configuration

Creating Configuration Objects. You can define a configuration object
in the MATLAB workspace.

To Create... Use a Command Such As...

MEX configuration object

coder.MexCodeConfig

cfg = coder.config('mex');

Code generation configuration
object for generating a standalone
C/C++ library or executable

coder.CodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note If an Embedded Coder license is available, creates a
coder.EmbeddedCodeConfig object.

If you use concurrent licenses, to disable check out of an
Embedded Coder license, use one of the following commands:

cfg = coder.config('lib', 'ecoder', false)

cfg = coder.config('dll', 'ecoder', false)

cfg = coder.config('exe', 'ecoder', false)

19-33

19 Generating C/C++ Code from MATLAB® Code

To Create... Use a Command Such As...

Code generation configuration
object for generating a standalone
C/C++ library or executable for an
embedded target

coder.EmbeddedCodeConfig

% To generate a static library
cfg = coder.config('lib');
% To generate a dynamic library
cfg = coder.config('dll')
% To generate an executable
cfg = coder.config('exe');

Note Requires an Embedded Coder license; otherwise
creates a coder.CodeConfig object.

Hardware implementation
configuration object

coder.HardwareImplementation

hwcfg = coder.HardwareImplementation

Each configuration object comes with a set of parameters, initialized to
default values. You can change these settings, as described in “Modifying
Configuration Objects at the Command Line Using Dot Notation” on page
19-34.

Modifying Configuration Objects at the Command Line Using Dot
Notation. You can use dot notation to modify the value of one configuration
object parameter at a time. Use this syntax:

configuration_object.property = value

Dot notation uses assignment statements to modify configuration object
properties:

• To specify a main function during C/C++ code generation:

cfg = coder.config('exe');
cfg.CustomInclude = 'c:\myfiles';
cfg.CustomSource = 'main.c';
codegen -config cfg foo

19-34

Build Setting Configuration

• To automatically generate and launch code generation reports after
generating a C/C++ static library:

cfg = coder.config('lib');
cfg.GenerateReport= true;
cfg.LaunchReport = true;
codegen -config cfg foo

Saving Configuration Objects. Configuration objects do not automatically
persist between MATLAB sessions. Use one of the following methods to
preserve your settings:

Save a configuration object to a MAT-file and then load the MAT-file
at your next session

For example, assume you create and customize a MEX configuration object
mexcfg in the MATLAB workspace. To save the configuration object, at the
MATLAB prompt, enter:

save mexcfg.mat mexcfg

The save command saves mexcfg to the file mexcfg.mat in the current folder.

To restore mexcfg in a new MATLAB session, at the MATLAB prompt, enter:

load mexcfg.mat

The load command loads the objects defined in mexcfg.mat to the MATLAB
workspace.

Write a script that creates the configuration object and sets its
properties.

You can rerun the script whenever you need to use the configuration object
again.

19-35

19 Generating C/C++ Code from MATLAB® Code

Specifying Build Configuration Parameters at the Command
Line Using Dialog Boxes

1 Create a configuration object as described in “Creating Configuration
Objects” on page 19-33.

For example, to create a coder.MexCodeConfig configuration object for
MEX code generation:

mexcfg = coder.config('mex');

2 Open the property dialog box using one of these methods:

• In the MATLAB workspace, double-click the configuration object
variable.

• At the MATLAB prompt, issue the open command, passing it the
configuration object variable, as in this example:

open mexcfg

3 In the dialog box, modify configuration parameters as required, then click
Apply.

4 Call the codegen function with the -config option. Specify the
configuration object as its argument:

codegen -config mexcfg foo

The -config option specifies the type of output that you want to build.
For more information, see codegen.

19-36

Share Build Configuration Settings

Share Build Configuration Settings
To share build configuration settings between multiple projects or between
the project and command-line workflow, use the project Export settings
and Import settings options.

Export Settings
To export the current project settings to a code generation configuration object
stored in the base workspace:

1 In the top right corner of the project, click the Actions icon () and select
Export settings.

2 In the Export Project Settings dialog box, specify a name for the
configuration object.

MATLAB Coder saves the project settings information in a configuration
object with the specified name in the base workspace.

19-37

19 Generating C/C++ Code from MATLAB® Code

Project Output Type Configuration Object

MEX Function

Instrumented MEX Function

coder.MexCodeConfig

C/C++ Static Library

C/C++ Dynamic Library

C/C++ Executable

Without an Embedded Coder
license:coder.CodeConfig
With an Embedded Coder
license:coder.EmbeddedCodeConfig

You can then either import these settings into another project or use it with
the codegen function -config option to generate code at the command line.

Import Settings
To import the settings saved in a code generation configuration object stored
in the base workspace:

1 In the top right corner of the project, click the Actions icon () and select
Import settings.

2 In the Import Project Settings dialog box, select the configuration object
that you want to use.

MATLAB Coder imports the settings saved in the configuration object and
uses them as the current project settings.

19-38

Share Build Configuration Settings

Note When you import a coder.MexCodeConfig object, if the project
output type is not already set to Instrumented MEX Function, the output
type is set to MEX Function.

See Also

• “Build Setting Configuration” on page 19-21

• coder.config

19-39

19 Generating C/C++ Code from MATLAB® Code

Primary Function Input Specification

In this section...

“Why You Must Specify Input Properties” on page 19-40

“Properties to Specify” on page 19-40

“Rules for Specifying Properties of Primary Inputs” on page 19-44

“Methods for Defining Properties of Primary Inputs” on page 19-45

“Define Input Properties by Example at the Command Line” on page 19-46

“Specify Constant Inputs at the Command Line” on page 19-48

“Specify Variable-Size Inputs at the Command Line” on page 19-50

Why You Must Specify Input Properties
Because C and C++ are statically typed languages, MATLAB Coder must
determine the properties of all variables in the MATLAB files at compile time.
To infer variable properties in MATLAB files, MATLAB Coder must be able
to identify the properties of the inputs to the primary function, also known
as the top-level or entry-point function. Therefore, if your primary function
has inputs, you must specify the properties of these inputs, to MATLAB
Coder. If your primary function has no input parameters, MATLAB Coder
can compile your MATLAB file without modification. You do not need to
specify properties of inputs to local functions or external functions called by
the primary function.

If you use the tilde (~) character to specify unused function inputs:

• In MATLAB Coder projects, if you want a different type to appear in the
generated code, specify the type. Otherwise, the inputs default to real,
scalar doubles.

• When generating code with codegen, you must specify the type of these
inputs using the -args option.

Properties to Specify
If your primary function has inputs, you must specify the following properties
for each input.

19-40

Primary Function Input Specification

For... Specify properties...

Class Size Complexity numerictype fimath

Fixed-point
inputs

Each field in
a structure
input

Specify properties for each field according to its class

When a primary input is a structure, the code generation software treats each
field as a separate input. Therefore, you must specify properties for allfields of a
primary structure input in the order that they appear in the structure definition:

• For each field of input structures, specify class, size, and complexity.

• For each field that is fixed-point class, also specify numerictype, and fimath.

Other inputs

Default Property Values
MATLAB Coder assigns the following default values for properties of primary
function inputs.

Property Default

class double

size scalar

complexity real

numerictype No default

fimath MATLAB default fimath object

19-41

19 Generating C/C++ Code from MATLAB® Code

Specifying Default Values for Structure Fields. In most cases, when you
don’t explicitly specify values for properties, MATLAB Coder uses defaults
except for structure fields. The only way to name a field in a structure is to
set at least one of its properties. Therefore, you might need to specify default
values for properties of structure fields. For examples, see “Specifying Class
and Size of Scalar Structure” on page 19-61 and “Specifying Class and Size
of Structure Array” on page 19-62.

Specifying Default fimath Values for MEX Functions. MEX functions
generated with MATLAB Coder use the default fimath value in effect at
compile time. If you do not specify a default fimath value, MATLAB Coder
uses the MATLAB default fimath. The MATLAB factory default has the
following properties:

RoundingMethod: Nearest
OverflowAction: Saturate
ProductMode: FullPrecision
SumMode: FullPrecision
CastBeforeSum: true

For more information, see “fimath for Sharing Arithmetic Rules”.

When running MEX functions that depend on the default fimath value, do
not change this value during your MATLAB session. Otherwise, you receive
a run-time warning, alerting you to a mismatch between the compile-time
and run-time fimath values.

For example, suppose you define the following MATLAB function test:

function y = test %#codegen
y = fi(0);

The function test constructs a fi object without explicitly specifying a fimath
object. Therefore, test relies on the default fimath object in effect at compile
time. At the MATLAB prompt, generate the MEX function text_mex to use
the factory setting of the MATLAB default fimath:

codegen test
% codegen generates a MEX function, test_mex,
% in the current folder

19-42

Primary Function Input Specification

Next, run test_mex to display the MATLAB default fimath value:

test_mex

ans =

0

DataTypeMode: Fixed-point: binary point scaling
Signedness: Signed
WordLength: 16

FractionLength: 15

Now create a local MATLAB fimath value. so you no longer use the default
setting:

F = fimath('RoundingMethod','Floor');

Finally, clear the MEX function from memory and rerun it:

clear test_mex
test_mex

The mismatch is detected and causes an error:

??? This function was generated with a different default
fimath than the current default.

Error in ==> test_mex

Supported Classes
The following table presents the class names supported by MATLAB Coder.

Class Name Description

logical Logical array of true and false values

char Character array

int8 8-bit signed integer array

uint8 8-bit unsigned integer array

19-43

19 Generating C/C++ Code from MATLAB® Code

Class Name Description

int16 16-bit signed integer array

uint16 16-bit unsigned integer array

int32 32-bit signed integer array

uint32 32-bit unsigned integer array

int64 64-bit signed integer array

uint64 64–bit unsigned integer array

single Single-precision floating-point or
fixed-point number array

double Double-precision floating-point or
fixed-point number array

struct Structure array

embedded.fi Fixed-point number array

Rules for Specifying Properties of Primary Inputs
When specifying the properties of primary inputs, follow these rules.

• You must specify the class of all primary inputs. If you do not specify the
size or complexity of primary inputs, they default to real scalars.

• For each primary function input whose class is fixed point (fi), you must
specify the input numerictype and fimath properties.

• For each primary function input whose class is struct, you must specify
the properties of each of its fields in the order that they appear in the
structure definition.

19-44

Primary Function Input Specification

Methods for Defining Properties of Primary Inputs
Method Advantages Disadvantages

“Specifying Properties
of Primary Function
Inputs in a Project”
on page 16-7

• If you are working in a MATLAB
Coder project, easy to use

• Does not alter original MATLAB
code

• MATLAB Coder saves the
definitions in the project file

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Define Input
Properties by
Example at the
Command Line” on
page 19-46

Note If you define
input properties
programmatically
in the MATLAB file,
you cannot use this
method

• Easy to use

• Does not alter original MATLAB
code

• Designed for prototyping a
function that has a small
number of primary inputs

• Must be specified at the
command line every time you
invoke codegen (unless you use
a script)

• Not efficient for specifying
memory-intensive inputs such
as large structures and arrays

“Define Input
Properties
Programmatically
in the MATLAB File”
on page 19-52

• Integrated with MATLAB code;
no need to redefine properties
each time you invoke MATLAB
Coder

• Provides documentation of
property specifications in the
MATLAB code

• Efficient for specifying
memory-intensive inputs
such as large structures

• Uses complex syntax

• MATLAB Coder project
files do not currently
recognize properties defined
programmatically. If you are
using a project, you must
reenter the input types in the
project.

19-45

19 Generating C/C++ Code from MATLAB® Code

Define Input Properties by Example at the Command
Line

• “Command Line Option -args” on page 19-46

• “Rules for Using the -args Option” on page 19-46

• “Specifying Properties of Primary Inputs by Example at the Command
Line” on page 19-47

• “Specifying Properties of Primary Fixed-Point Inputs by Example at the
Command Line” on page 19-47

Command Line Option -args
The codegen function provides a command-line option -args for specifying
the properties of primary (entry-point) function inputs as a cell array of
example values. The cell array can be a variable or literal array of constant
values. Using this option, you specify the properties of inputs at the same
time as you generate code for the MATLAB function with codegen. If you
have a test function or script that calls the entry-point MATLAB function with
the required types, you can use coder.getArgTypes to determine the types of
the function inputs. coder.getArgTypes returns a cell array of coder.Type
objects that you can pass to codegen using the -args option. For more
information, see the coder.getArgTypes function reference information.

See “Specifying General Properties of Primary Inputs” on page 19-60 for
codegen.

Rules for Using the -args Option
When using the -args command-line option to define properties by example,
follow these rules:

• The cell array of sample values must contain the same number of elements
as primary function inputs.

• The order of elements in the cell array must correspond to the order in
which inputs appear in the primary function signature — for example, the
first element in the cell array defines the properties of the first primary
function input.

19-46

Primary Function Input Specification

Note If you specify an empty cell array with the -args option, codegen
interprets this to mean that the function takes no inputs; a compile-time error
occurs if the function does have inputs.

Specifying Properties of Primary Inputs by Example at the
Command Line
Consider a MATLAB function that adds its two inputs:

function y = mcf(u,v)
%#codegen
y = u + v;

The following examples show how to specify different properties of the
primary inputs u and v by example at the command line:

• Use a literal cell array of constants to specify that both inputs are real
scalar doubles:

codegen mcf -args {0,0}

• Use a literal cell array of constants to specify that input u is an unsigned
16-bit, 1-by-4 vector and input v is a scalar double:

codegen mcf -args {zeros(1,4,'uint16'),0}

• Assign sample values to a cell array variable to specify that both inputs are
real, unsigned 8-bit integer vectors:

a = uint8([1;2;3;4])
b = uint8([5;6;7;8])
ex = {a,b}
codegen mcf -args ex

Specifying Properties of Primary Fixed-Point Inputs by
Example at the Command Line
To generate a MEX function or C/C++ code for fixed-point MATLAB code, you
must install Fixed-Point Designer software.

19-47

19 Generating C/C++ Code from MATLAB® Code

Consider a MATLAB function that calculates the square root of a fixed-point
number:

%#codegen
function y = sqrtfi(x)
y = sqrt(x);

To specify the properties of the primary fixed-point input x by example on the
MATLAB command line, follow these steps:

1 Define the numerictype properties for x, as in this example:

T = numerictype('WordLength',32,...
'FractionLength',23,...
'Signed',true);

2 Define the fimath properties for x, as in this example:

F = fimath('SumMode','SpecifyPrecision',...
'SumWordLength',32,...
'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,...
'ProductFractionLength',23);

3 Create a fixed-point variable with the numerictype and fimath properties
you just defined, as in this example:

myeg = { fi(4.0,T,F) };

4 Compile the function sqrtfi using the codegen command, passing the
variable myeg as the argument to the -args option, as in this example:

codegen sqrtfi -args myeg;

Specify Constant Inputs at the Command Line
In cases where you know your primary inputs will not change at run time,
it is more efficient to specify them as constant values than as variables to
eliminate unnecessary overhead in generated code. Common uses of constant
inputs are for flags that control how an algorithm executes and values that
specify the sizes or types of data.

19-48

Primary Function Input Specification

You can define inputs to be constants using the -args command-line option
with a coder.Constant object, as in this example:

-args {coder.Constant(constant_input)}

This expression specifies that an input will be a constant with the size, class,
complexity, and value of constant_input.

Calling Functions with Constant Inputs
codegen compiles constant function inputs into the generated code. As
a result, the MEX function signature differs from the MATLAB function
signature. At run time you supply the constant argument to the MATLAB
function, but not to the MEX function.

For example, consider the following function identity which copies its input
to its output:

function y = identity(u) %#codegen
y = u;

To generate a MEX function identity_mex with a constant input, at the
MATLAB prompt, type the following command:

codegen identity -args {coder.Constant(42)}

To run the MATLAB function, supply the constant argument:

identity(42)

You get the following result:

ans =

42

Now, try running the MEX function with this command:

identity_mex

You should get the same answer.

19-49

19 Generating C/C++ Code from MATLAB® Code

Specifying a Structure as a Constant Input
Suppose you define a structure tmp in the MATLAB workspace to specify
the dimensions of a matrix:

tmp = struct('rows', 2, 'cols', 3);

The following MATLAB function rowcol accepts a structure input p to define
matrix y:

function y = rowcol(u,p) %#codegen
y = zeros(p.rows,p.cols) + u;

The following example shows how to specify that primary input u is a double
scalar variable and primary input p is a constant structure:

codegen rowcol -args {0,coder.Constant(tmp)}

Specify Variable-Size Inputs at the Command Line
Variable-size data is data whose size might change at run time. MATLAB
supports bounded and unbounded variable-size data for code generation.
Bounded variable-size data has fixed upper bounds. This data can be allocated
statically on the stack or dynamically on the heap. Unbounded variable-size
data does not have fixed upper bounds. This data must be allocated on the
heap. You can define inputs to have one or more variable-size dimensions —
and specify their upper bounds — using the -args option and coder.typeof
function:

-args {coder.typeof(example_value, size_vector, variable_dims}

Specifies a variable-size input with:

• Same class and complexity as example_value

• Same size and upper bounds as size_vector

• Variable dimensions specified by variable_dims

When you enable dynamic memory allocation, you can specify Inf in the size
vector for dimensions with unknown upper bounds at compile time.

When variable_dims is a scalar, it is applied to all the dimensions, with the
following exceptions:

19-50

Primary Function Input Specification

• If the dimension is 1 or 0, which are fixed.

• If the dimension is unbounded, which is always variable size.

For more information, see coder.typeof and “Generate Code for
Variable-Size Data” on page 19-95.

Specifying a Variable-Size Vector Input

1 Write a function that computes the average of every n elements of a vector
A and stores them in a vector B:

function B = nway(A,n) %#codegen
% Compute average of every N elements of A and put them in B.

coder.extrinsic('error');
if ((mod(numel(A),n) == 0) && (n>=1 && n<=numel(A)))

B = ones(1,numel(A)/n);
k = 1;
for i = 1 : numel(A)/n

B(i) = mean(A(k + (0:n-1)));
k = k + n;

end
else

B = zeros(1,0);
error('n <= 0 or does not divide number of elements evenly');

end

2 Specify the first input A as a vector of double values. Its first dimension
stays fixed in size and its second dimension can grow to an upper bound of
100. Specify the second input n as a double scalar.

codegen -report nway -args {coder.typeof(0,[1 100],1),1}

3 As an alternative, assign the coder.typeof expression to a MATLAB
variable, then pass the variable as an argument to -args:

vareg = coder.typeof(0,[1 100],1)
codegen -report nway -args {vareg, 0}

19-51

19 Generating C/C++ Code from MATLAB® Code

Define Input Properties Programmatically in the MATLAB
File

With MATLAB Coder, you use the MATLAB assert function to define
properties of primary function inputs directly in your MATLAB file.

In this section...

“How to Use assert with MATLAB® Coder™” on page 19-52

“Rules for Using assert Function” on page 19-59

“Specifying General Properties of Primary Inputs” on page 19-60

“Specifying Properties of Primary Fixed-Point Inputs” on page 19-61

“Specifying Class and Size of Scalar Structure” on page 19-61

“Specifying Class and Size of Structure Array” on page 19-62

How to Use assert with MATLAB Coder
Use the assert function to invoke standard MATLAB functions for specifying
the class, size, and complexity of primary function inputs.

You must use one of the following methods when specifying input properties
using the assert function. Use the exact syntax that is provided; do not
modify it.

• “Specify Any Class” on page 19-53

• “Specify fi Class” on page 19-53

• “Specify Structure Class” on page 19-54

• “Specify Fixed Size” on page 19-54

• “Specify Scalar Size” on page 19-55

• “Specify Upper Bounds for Variable-Size Inputs” on page 19-55

• “Specify Inputs with Fixed- and Variable-Size Dimensions” on page 19-55

• “Specify Size of Individual Dimensions” on page 19-56

• “Specify Real Input” on page 19-57

19-52

Define Input Properties Programmatically in the MATLAB® File

• “Specify Complex Input” on page 19-57

• “Specify numerictype of Fixed-Point Input” on page 19-57

• “Specify fimath of Fixed-Point Input” on page 19-58

• “Specify Multiple Properties of Input” on page 19-58

Specify Any Class

assert (isa (param, 'class_name'))

Sets the input parameter param to the MATLAB class class_name. For
example, to set the class of input U to a 32-bit signed integer, call:

...
assert(isa(U,'int32'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 19-57.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 19-58. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order that they appear in the structure definition.

Specify fi Class

assert (isfi (param))
assert (isa (param, 'embedded.fi'))

Sets the input parameter param to the MATLAB class fi (fixed-point numeric
object). For example, to set the class of input U to fi, call:

...
assert(isfi(U));
...

or

19-53

19 Generating C/C++ Code from MATLAB® Code

...
assert(isa(U,'embedded.fi'));
...

If you set the class of an input parameter to fi, you must also set its
numerictype, see “Specify numerictype of Fixed-Point Input” on page 19-57.
You can also set its fimath properties, see “Specify fimath of Fixed-Point
Input” on page 19-58. If you do not set the fimath properties, codegen uses
the MATLAB default fimath value.

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Structure Class

assert (isstruct (param))
assert (isa (param, 'struct'))

Sets the input parameter param to the MATLAB class struct (structure). For
example, to set the class of input U to a struct, call:

...
assert(isstruct(U));
...

or

...
assert(isa(U, 'struct'));
...

If you set the class of an input parameter to struct, you must specify the
properties of all fields in the order they appear in the structure definition.

Specify Fixed Size

assert (all (size (param) == [dims]))

Sets the input parameter param to the size specified by dimensions dims. For
example, to set the size of input U to a 3-by-2 matrix, call:

19-54

Define Input Properties Programmatically in the MATLAB® File

...
assert(all(size(U)== [3 2]));
...

Specify Scalar Size

assert (isscalar (param))
assert (all (size (param) == [1]))

Sets the size of input parameter param to scalar. To set the size of input
U to scalar, call:

...
assert(isscalar(U));
...

or

...
assert(all(size(U)== [1]));
...

Specify Upper Bounds for Variable-Size Inputs

assert (all(size(param)<=[N0 N1 ...]));
assert (all(size(param)<[N0 N1 ...]));

Sets the upper-bound size of each dimension of input parameter param. To set
the upper-bound size of input U to be less than or equal to a 3-by-2 matrix, call:

assert(all(size(U)<=[3 2]));

Note You can also specify upper bounds for variable-size inputs using
coder.varsize.

Specify Inputs with Fixed- and Variable-Size Dimensions

assert (all(size(param)>=[M0 M1 ...]));

19-55

19 Generating C/C++ Code from MATLAB® Code

assert (all(size(param)<=[N0 N1 ...]));

When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

• You must also specify an upper-bound size for each dimension of the input
parameter.

• For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

• To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

• Bounds must be non-negative.

To fix the size of the first dimension of input U to 3 and set the second
dimension as variable size with upper-bound of 2, call:

assert(all(size(U)>=[3 0]));
assert(all(size(U)<=[3 2]));

Specify Size of Individual Dimensions

assert (size(param, k)==Nk);
assert (size(param, k)<=Nk);
assert (size(param, k)<Nk);

You can specify individual dimensions as well as specifying all dimensions
simultaneously or instead of specifying all dimensions simultaneously. The
following rules apply:

• You must specify the size of each dimension at least once.

• The last dimension specification takes precedence over earlier
specifications.

Sets the upper-bound size of dimension k of input parameter param. To set
the upper-bound size of the first dimension of input U to 3, call:

assert(size(U,1)<=3)

19-56

Define Input Properties Programmatically in the MATLAB® File

To fix the size of the second dimension of input U to 2, call:

assert(size(U,2)==2)

Specify Real Input

assert (isreal (param))

Specifies that the input parameter param is real. To specify that input U is
real, call:

...
assert(isreal(U));
...

Specify Complex Input

assert (~isreal (param))

Specifies that the input parameter param is complex. To specify that input U
is complex, call:

...
assert(~isreal(U));
...

Specify numerictype of Fixed-Point Input

assert (isequal (numerictype (fiparam), T))

Sets the numerictype properties of fi input parameter fiparam to the
numerictype object T. For example, to specify the numerictype property of
fixed-point input U as a signed numerictype object T with 32-bit word length
and 30-bit fraction length, use the following code:

%#codegen
...
% Define the numerictype object.

19-57

19 Generating C/C++ Code from MATLAB® Code

T = numerictype(1, 32, 30);

% Set the numerictype property of input U to T.
assert(isequal(numerictype(U),T));
...

Specify fimath of Fixed-Point Input

assert (isequal (fimath (fiparam), F))

Sets the fimath properties of fi input parameter fiparam to the fimath
object F. For example, to specify the fimath property of fixed-point input U so
that it saturates on integer overflow, use the following code:

%#codegen
...
% Define the fimath object.
F = fimath('OverflowMode','saturate');

% Set the fimath property of input U to F.
assert(isequal(fimath(U),F));
...

If you do not specify the fimath properties using assert, codegen uses the
MATLAB default fimath value.

Specify Multiple Properties of Input

assert (function1 (params) &&
function2 (params) &&
function3 (params) && ...)

Specifies the class, size, and complexity of one or more inputs using a single
assert function call. For example, the following code specifies that input U is
a double, complex, 3-by-3 matrix, and input V is a 16-bit unsigned integer:

%#codegen
...
assert(isa(U,'double') &&

~isreal(U) &&

19-58

Define Input Properties Programmatically in the MATLAB® File

all(size(U) == [3 3]) &&
isa(V,'uint16'));

...

Rules for Using assert Function
When using the assert function to specify the properties of primary function
inputs, follow these rules:

• Call assert functions at the beginning of the primary function, before
control-flow operations such as if statements or subroutine calls.

• Do not call assert functions inside conditional constructs, such as if, for,
while, and switch statements.

• Use the assert function with MATLAB Coder only for specifying properties
of primary function inputs before converting your MATLAB code to C/C++
code.

• If you set the class of an input parameter to fi, you must also set its
numerictype. See “Specify numerictype of Fixed-Point Input” on page
19-57. You can also set its fimath properties. See “Specify fimath of
Fixed-Point Input” on page 19-58. If you do not set the fimath properties,
codegen uses the MATLAB default fimath value.

• If you set the class of an input parameter to struct, you must specify the
class, size, and complexity of all fields in the order that they appear in the
structure definition.

• When you use assert(all(size(param)>=[M0 M1 ...])) to specify the
lower-bound size of each dimension of an input parameter:

- You must also specify an upper-bound size for each dimension of the
input parameter.

- For each dimension, k, the lower-bound Mk must be less than or equal to
the upper-bound Nk.

- To specify a fixed-size dimension, set the lower and upper bound of a
dimension to the same value.

- Bounds must be non-negative.

• If you specify individual dimensions, the following rules apply:

- You must specify the size of each dimension at least once.

19-59

19 Generating C/C++ Code from MATLAB® Code

- The last dimension specification takes precedence over earlier
specifications.

Specifying General Properties of Primary Inputs
In the following code excerpt, a primary MATLAB function mcspecgram
takes two inputs: pennywhistle and win. The code specifies the following
properties for these inputs:

Input Property Value

class int16

size 220500-by-1 vector

pennywhistle

complexity real (by default)

class double

size 1024-by-1 vector

win

complexity real (by default)

%#codegen
function y = mcspecgram(pennywhistle,win)
nx = 220500;
nfft = 1024;
assert(isa(pennywhistle,'int16'));
assert(all(size(pennywhistle) == [nx 1]));
assert(isa(win, 'double'));
assert(all(size(win) == [nfft 1]));
...

Alternatively, you can combine property specifications for one or more inputs
inside assert commands:

%#codegen

function y = mcspecgram(pennywhistle,win)

nx = 220500;

nfft = 1024;

assert(isa(pennywhistle,'int16') && all(size(pennywhistle) == [nx 1]));

assert(isa(win, 'double') && all(size(win) == [nfft 1]));

...

19-60

Define Input Properties Programmatically in the MATLAB® File

Specifying Properties of Primary Fixed-Point Inputs
To specify fixed-point inputs, you must install Fixed-Point Designer software.

In the following example, the primary MATLAB function mcsqrtfi takes one
fixed-point input x. The code specifies the following properties for this input.

Property Value

class fi

numerictype numerictype object T, as specified in the
primary function

fimath fimath object F, as specified in the primary
function

size scalar

complexity real (by default)

function y = mcsqrtfi(x) %#codegen
T = numerictype('WordLength',32,'FractionLength',23,...

'Signed',true);
F = fimath('SumMode','SpecifyPrecision',...

'SumWordLength',32,'SumFractionLength',23,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',32,'ProductFractionLength',23);

assert(isfi(x));
assert(isequal(numerictype(x),T));
assert(isequal(fimath(x),F));

y = sqrt(x);

Specifying Class and Size of Scalar Structure
Assume you have defined S as the following scalar MATLAB structure:

S = struct('r',double(1),'i',int8(4));

Here is code that specifies the class and size of S and its fields when passed as
an input to your MATLAB function:

function y = fcn(S) %#codegen

19-61

19 Generating C/C++ Code from MATLAB® Code

% Specify the class of the input as struct.
assert(isstruct(S));

% Specify the class and size of the fields r and i
% in the order in which you defined them.
assert(isa(S.r,'double'));
assert(isa(S.i,'int8');
...

In most cases, when you don’t explicitly specify values for properties,
MATLAB Coder uses defaults — except for structure fields. The only way
to name a field in a structure is to set at least one of its properties. As a
minimum, you must specify the class of a structure field

Specifying Class and Size of Structure Array
For structure arrays, you must choose a representative element of the array
for specifying the properties of each field. For example, assume you have
defined S as the following 2-by-2 array of MATLAB structures:

S = struct('r',{double(1), double(2)},'i',{int8(4), int8(5)});

The following code specifies the class and size of each field of structure input S
using the first element of the array:

%#codegen
function y = fcn(S)

% Specify the class of the input S as struct.
assert(isstruct(S));

% Specify the size of the fields r and i
% based on the first element of the array.
assert(all(size(S) == [2 2]));
assert(isa(S(1).r,'double'));
assert(isa(S(1).i,'int8'));

The only way to name a field in a structure is to set at least one of its
properties. As a minimum, you must specify the class of all fields.

19-62

Speed Up Compilation

Speed Up Compilation

In this section...

“Generate Code Only” on page 19-63

“Disable Compiler Optimization” on page 19-63

Generate Code Only
If you select this option, MATLAB Coder does not invoke the make command
or generate compiled object code. When you want to iterate rapidly between
modifying MATLAB code and generating C/C++ code and you want to inspect
the generated code, this option saves you time during the development cycle .

In the Project Interface
On the project Build tab, select Generate code only.

At the Command Line
Use the codegen -c option to only generate code without invoking the make
command. For example, to generate code only for a function, foo, that takes
one single, scalar input:

codegen -c foo -args {single(0)}

For more information and a complete list of compilation options, see codegen.

Disable Compiler Optimization
Turning compiler optimizations off shortens compile time, but increases run
time.

In the Project Interface

1 On the MATLAB Coder project Build tab, verify that the Output type is
C/C++ Static Library, C/C++ Dynamic Library or C/C++ Executable.

2 On the Build tab, click the More settings link.

19-63

19 Generating C/C++ Code from MATLAB® Code

3 In the Project Settings dialog box All Settings tab, under Advanced,
set Compiler optimization level to Off.

At the Command Line

1 Create a code generation configuration object for C/C++ library or
executable. For example, for a static library:

cfg = coder.config('lib');

2 Set the CCompilerOptimization to Off.

cfg.CCompilerOptimization='Off';

19-64

Paths and File Infrastructure Setup

Paths and File Infrastructure Setup

In this section...

“Compile Path Search Order” on page 19-65

“Specifying Folders to Search for Custom Code” on page 19-65

“Naming Conventions” on page 19-66

Compile Path Search Order
MATLAB Coder resolves MATLAB functions by searching first on the code
generation path and then on the MATLAB path. The code generation path
contains the current folder and the code generation libraries. By default,
unless MATLAB Coder determines that a function should be extrinsic or you
explicitly declare the function to be extrinsic, MATLAB Coder tries to compile
and generate code for functions it finds on the path. MATLAB Coder does
not compile extrinsic functions, but rather dispatches them to the MATLAB
interpreter for execution. See “Resolution of Function Calls in MATLAB
Generated Code” on page 13-2.

Specifying Folders to Search for Custom Code
If you want to integrate custom code — such as source, header, and library
files — with the generated code, you can specify additional folder to search.
The following table describes how to specify these search paths. The path
should not contain spaces, as this can lead to code generation failures in
certain operating system configurations. If the path contains non 7-bit ASCII
characters, such as Japanese characters, MATLAB Coder might not be able to
find files on this path.

19-65

19 Generating C/C++ Code from MATLAB® Code

To specify
additional folders:

Do this:

Using the MATLAB
Coder interface

On the MATLAB Coder project Build tab:

1 Click the More settings link.

2 In the Project Settings dialog box, click the
Paths tab.

3 For the Search paths field, either browse to add
a folder to the search path or enter the full path.
The search path must not contain spaces.

At the command line Use the codegen function -I option.

Naming Conventions
MATLAB Coder enforces naming conventions for MATLAB functions and
generated files.

• “Reserved Prefixes” on page 19-66

• “Reserved Keywords” on page 19-66

• “Conventions for Naming Generated files” on page 19-70

Reserved Prefixes
MATLAB Coder reserves the prefix eml for global C/C++ functions and
variables in generated code. For example, MATLAB for code generation
run-time library function names begin with the prefix emlrt, such as
emlrtCallMATLAB. To avoid naming conflicts, do not name C/C++ functions or
primary MATLAB functions with the prefix eml.

Reserved Keywords

• “C Reserved Keywords” on page 19-67

• “C++ Reserved Keywords” on page 19-67

• “Reserved Keywords for Code Generation” on page 19-68

19-66

Paths and File Infrastructure Setup

• “MATLAB® Coder™ Code Replacement Library Keywords” on page 19-68

MATLAB Coder software reserves certain words for its own use as keywords
of the generated code language. MATLAB Coder keywords are reserved for
use internal to MATLAB Coder software and should not be used in MATLAB
code as identifiers or function names. C reserved keywords should also not
be used in MATLAB code as identifiers or function names. If your MATLAB
code contains reserved keywords, the code generation build does not complete
and an error message is displayed. To address this error, modify your code
to use identifiers or names that are not reserved.

If you are generating C++ code using the MATLAB Coder software, in
addition, your MATLAB code must not contain the “C++ Reserved Keywords”
on page 19-67.

C Reserved Keywords.

auto double int struct

break else long switch

case enum register typedef

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

C++ Reserved Keywords.

catch friend protected try

class inline public typeid

const_cast mutable reinterpret_cast typename

delete namespace static_cast using

dynamic_cast new template virtual

19-67

19 Generating C/C++ Code from MATLAB® Code

explicit operator this wchar_t

export private throw

Reserved Keywords for Code Generation.

abs fortran localZCE rtNaN

asm HAVESTDIO localZCSV SeedFileBuffer

bool id_t matrix SeedFileBufferLen

boolean_T int_T MODEL single

byte_T int8_T MT TID01EQ

char_T int16_T NCSTATES time_T

cint8_T int32_T NULL true

cint16_T int64_T NUMST TRUE

cint32_T INTEGER_CODE pointer_T uint_T

creal_T LINK_DATA_BUFFER_SIZE PROFILING_ENABLED uint8_T

creal32_T LINK_DATA_STREAM PROFILING_NUM_SAMPLES uint16_T

creal64_T localB real_T uint32_T

cuint8_T localC real32_T uint64_T

cuint16_T localDWork real64_T UNUSED_PARAMETER

cuint32_T localP RT USE_RTMODEL

ERT localX RT_MALLOC VCAST_FLUSH_DATA

false localXdis rtInf vector

FALSE localXdot rtMinusInf

MATLAB Coder Code Replacement Library Keywords. The list of
code replacement library (CRL) reserved keywords for your development
environment varies depending on which CRLs currently are registered.
Beyond the default ANSI, ISO, and GNU® CRLs provided with MATLAB
Coder software, additional CRLs might be registered and available for use if
you have installed other products that provide CRLs (for example, a target
product), or if you have used Embedded Coder APIs to create and register
custom CRLs.

19-68

Paths and File Infrastructure Setup

To generate a list of reserved keywords for the CRLs currently registered in
your environment, use the following MATLAB function:

crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers()

This function returns an array of CRL keyword strings. Specifying the return
argument is optional.

Note To list the CRLs currently registered in your environment, use the
MATLAB command RTW.viewTfl.

To generate a list of reserved keywords for the CRL that you are using to
generate code, call the function passing the name of the CRL as displayed in
the Code replacement librarymenu on the Code Generation > Interface
pane of the Configuration Parameters dialog box. For example,

crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

Here is a partial example of the function output:

>> crl_ids = RTW.TargetRegistry.getInstance.getTflReservedIdentifiers('GNU99 (GNU)')

crl_ids =

'exp10'

'exp10f'

'acosf'

'acoshf'

'asinf'

'asinhf'

'atanf'

'atanhf'

...

'rt_lu_cplx'

'rt_lu_cplx_sgl'

'rt_lu_real'

'rt_lu_real_sgl'

'rt_mod_boolean'

'rt_rem_boolean'

19-69

19 Generating C/C++ Code from MATLAB® Code

'strcpy'

'utAssert'

Note Some of the returned keyword strings appear with the suffix
$N, for example, 'rt_atan2$N'. $N expands into the suffix _snf only if
nonfinite numbers are supported. For example, 'rt_atan2$N' represents
'rt_atan2_snf' if nonfinite numbers are supported and 'rt_atan2' if
nonfinite numbers are not supported. As a precaution, you should treat both
forms of the keyword as reserved.

Conventions for Naming Generated files
The following table describes how MATLAB Coder names generated files.
MATLAB Coder follows MATLAB conventions by providing platform-specific
extensions for MEX files.

Platform MEX File
Extension

MATLAB
Coder Library
Extension

MATLAB Coder
Executable
Extension

Linus Torvalds’
Linux (32-bit)

.mexglx .a None

Linux x86-64 .mexa64 .a None

Microsoft
Windows (32-bit)

.mexw32 .lib .exe

Windows x64 .mexw64 .lib .exe

19-70

Generate Code for Multiple Entry-Point Functions

Generate Code for Multiple Entry-Point Functions

In this section...

“Advantages of Generating Code for More Than One Entry-Point Function”
on page 19-71

“Generating Code for More Than One Entry-Point Function Using the
Project Interface” on page 19-71

“Generating Code for More Than One Entry-Point Function at the
Command Line” on page 19-74

“How to Call an Entry-Point Function in a MEX Function” on page 19-75

“How to Call an Entry-Point Function in a C/C++ Library Function from
C/C++ Code” on page 19-76

Advantages of Generating Code for More Than One
Entry-Point Function
Generating a single C/C++ library for more than one entry-point MATLAB
function allows you to:

• Create C/C++ libraries containing multiple, compiled MATLAB files to
integrate with larger C/C++ applications.

• Share code efficiently between library functions.

• Communicate between library functions using shared memory.

Generating a MEX function for more than one entry-point function allows
you to validate entry-point interactions in MATLAB before creating a C/C++
library.

Generating Code for More Than One Entry-Point
Function Using the Project Interface
In the project, in the Entry-Point Files pane on the Overview tab, click the
Add files link. Browse to the file that you want to add. Repeat this action for
each entry-point file.

19-71

19 Generating C/C++ Code from MATLAB® Code

By default, MATLAB Coder:

• Lists the entry-point files alphabetically.

• Generates a MEX function in the current folder. MATLAB Coder names
the MEX function , fun_1_mex. fun_1 is the name of the first entry-point
function.

• Stores generated files in the subfolder codegen/mex/fun_1/.

Generating a MEX Function with Two Entry-Point Functions Using
the Project Interface

Generate a MEX function with two entry-point functions, ep1 and ep2.
Function ep1 takes one input, a single scalar, and ep2 takes two inputs, a
double scalar and a double vector.

1 In a local writable folder, create a MATLAB file, ep1.m, that contains:

function y = ep1(u) %#codegen
y = u;

2 In the same folder, create a MATLAB file, ep2.m, that contains:

function y = ep2(u, v) %#codegen
y = u + v;

3 In the same folder, set up a MATLAB Coder project.

a At the MATLAB command line, enter:

coder -new ep.prj

By default, the project opens in the MATLAB workspace on the right
side.

b On the project Overview tab, click the Add files link. Browse to the file
ep1.m. Click OK to add the file to the project.

The file is displayed on the Overview tab, and the input is undefined.

c Define the type of input u.

19-72

Generate Code for Multiple Entry-Point Functions

i On the Overview tab, click the field to the right of the input
parameter u and then, from the list of input options, select single.

ii From the list of size options, select 1 x 1 to specify that u is a scalar.

d On the project Overview tab, click the Add files link. Browse to the file
ep2.m. Click OK to add the file to the project.

The file is displayed on the Overview tab, and the inputs are undefined.

e Define the type of input u.

iii On the Overview tab, click the field to the right of the input
parameter u and then, from the list of input options, select double.

iv From the list of size options, select 1 x 1 to specify that u is a scalar.

f Repeat the previous step for input v, setting the Size to 2x1.

4 In the MATLAB Coder project, click the Build tab.

By default, the Output type is MEX function and the Output file is
ep1_mex.

5 On this tab, click the Build button to generate a MEX function using the
default project settings.

MATLAB Coder builds the project and, by default, generates a MEX
function, ep1_mex, in the current folder. MATLAB Coder also generates
other supporting files in a subfolder called codegen/mex/ep1_mex.
MATLAB Coder uses the name of the MATLAB function as the root name
for the generated files and creates a platform-specific extension for the
MEX file, as described in “Naming Conventions” on page 19-66.

You can now test your MEX function in MATLAB. For more information,
see “How to Call an Entry-Point Function in a MEX Function” on page
19-75.

Generating a C Static Library with Two Entry-Point Functions Using
the Project Interface

You can generate a C static library with two entry-point functions, ep1 and
ep2, following the same project setup steps that you use to generate a MEX
function. (See Generating a MEX Function with Two Entry-Point Functions

19-73

19 Generating C/C++ Code from MATLAB® Code

Using the Project Interface on page 19-72.) When you build the project, set
the Output type to C/C++ Static Library.

MATLAB Coder builds the project and generates a C library, ep1, and
supporting files in the default folder, codegen/lib/ep1.

You can now test your library. For more information, see “How to Call an
Entry-Point Function in a C/C++ Library Function from C/C++ Code” on
page 19-76.

Generating Code for More Than One Entry-Point
Function at the Command Line
To generate code for more than one entry-point function, use the following
syntax, where global_options applies to functions, fun_1 through fun_n,
and options_n applies only to the preceding function fun_n.

codegen -global_options fun_1 -options_1 ... fun_n -options_n

By default, codegen:

• Generates a MEX function in the current folder. codegen names the MEX
function , fun_1_mex. fun_1 is the name of the first entry-point function.

• Stores generated files in the subfolder codegen/mex/fun_1/.

If you specify an output file name, out_fun, using the -o option, codegen
stores the generated files in the subfolder codegen/mex/out_fun/. For more
information on setting build options at the command line, see codegen.

Generating a MEX Function with Two Entry-Point Functions at the
Command Line

Generate a MEX function with two entry-point functions, ep1 and ep2.
Function ep1 takes one input, a single scalar, and ep2 takes two inputs, a
double scalar and a double vector. Using the -o option, name the generated
MEX function sharedmex.

codegen -o sharedmex ep1 -args single(0) ep2 -args { 0, zeros(1,1024) }

19-74

Generate Code for Multiple Entry-Point Functions

codegen generates a MEX function named sharedmex in the current folder
and stores generated files in the subfolder codegen/mex/sharedmex.

Note By default, codegen generates a MEX function named ep1_mex in the
subfolder, codegen/mex/ep1.

Generating a C/C++ Static Library with Two Entry-Point Functions at
the Command Line

Generate standalone C/C++ code and compile it to a library for two entry-point
functions, ep1 and ep2. Function ep1 takes one input, a single scalar, and ep2
takes two inputs, a double scalar and a double vector. Use the -config:lib
option to specify that the target is a library. Using the -o option, name the
generated library function sharedlib.

codegen -config:lib -o sharedlib ep1 -args single(0) ep2 ...
-args { 0, zeros(1,1024) }

codegen generates C/C++ library code in the codegen\lib\sharedlib folder.

Note By default, codegen generates a library function named ep1 in the
subfolder, codegen/lib/ep1.

For information on viewing entry-point functions in the code generation
report, see “Code Generation Reports” on page 19-172.

How to Call an Entry-Point Function in a MEX Function
To call an entry-point function in a MEX function that has more than one
entry point, use this syntax:

MEX_Function('entry_point_function_name',
... entry_point_function_param1,
... , entry_point_function_paramn)

19-75

19 Generating C/C++ Code from MATLAB® Code

Calling an Entry-Point Function in a MEX Function

Consider a MEX function, sharedmex, that has entry-point functions ep1 and
ep2. Entry-point function ep1 takes one single scalar input and ep2 takes two
inputs, a double scalar and a double vector.

To call ep1 with an input parameter u, enter:

sharedmex('ep1', u)

To call ep2 with input parameters u and v, enter:

sharedmex('ep2', u, v)

How to Call an Entry-Point Function in a C/C++
Library Function from C/C++ Code
To call an entry-point function in a C/C++ library function from C/C++ code,
write a main function in C/C++ that:

• Includes the generated header files, which contain the function prototypes
for the entry-point functions.

• Calls the initialize function before calling the entry-point functions for
the first time.

• Calls the terminate function after calling the entry-point functions for
the last time.

• Configures your target to integrate this custom C/C++ main function with
your generated code, as described in “Specify External File Locations” on
page 21-12.

• Generates the C/C++ executable using codegen.

See the example, “Call a C Static Library Function from C Code” on page 21-2.

19-76

Generate Code for Global Data

Generate Code for Global Data

In this section...

“Workflow” on page 19-77

“Declare Global Variables” on page 19-77

“Define Global Data” on page 19-78

“Synchronizing Global Data with MATLAB” on page 19-79

“Limitations of Using Global Data” on page 19-83

Workflow
To generate C/C++ code from MATLAB code that uses global data:

1 Declare the variables as global in your code.

2 Before using the global data, define and initialize it.

For more information, see “Define Global Data” on page 19-78.

3 Generate code from the MATLAB Coder project interface or using codegen.

If you use global data, you must also specify whether you want to synchronize
this data between MATLAB and the generated MEX function. For more
information, see “Synchronizing Global Data with MATLAB” on page 19-79.

Declare Global Variables
When using global data, you must first declare the global variables in your
MATLAB code. Consider the use_globals function that uses two global
variables AR and B:

function y = use_globals(u)
%#codegen
% Turn off inlining to make
% generated code easier to read
coder.inline('never');
% Declare AR and B as global variables
global AR;

19-77

19 Generating C/C++ Code from MATLAB® Code

global B;
AR(1) = u + B(1);
y = AR * 2;

Define Global Data
You can define global data either in the MATLAB global workspace, in a
MATLAB Coder project, or at the command line. If you do not initialize
global data in a project or at the command line, MATLAB Coder looks for the
variable in the MATLAB global workspace. If the variable does not exist,
MATLAB Coder generates an error.

Defining Global Data in the MATLAB Global Workspace
To generate a MEX function for the use_globals function described in
“Declare Global Variables” on page 19-77 using codegen:

1 In the MATLAB workspace, define and initialize the global data. At the
MATLAB prompt, enter:

global AR B;
AR = ones(4);
B=[1 2 3];

2 Generate a MEX file.

codegen use_globals -args {0}
% Use the -args option to specify that the input u
% is a real, scalar, double
% By default, codegen generates a MEX function,
% use_globals_mex, in the current folder

Defining Global Data in a MATLAB Coder Project

1 On the project Overview tab, click Add global and enter a name for the
global variable.

By default, MATLAB Coder names the first global variable in a project g,
and subsequent global variables g1, g2, etc.

19-78

Generate Code for Global Data

2 After adding a global variable, before building the project, specify its type
and initial value. For more information, see “Specifying Global Variable
Type and Initial Value in a Project” on page 16-33.

Note If you do not specify the type, you must create a variable with the
same name in the global workspace.

Defining Global Data at the Command Line
To define global data at the command line, use the codegen -globals option.
For example, to compile the use_globals function described in “Declare
Global Variables” on page 19-77, specify two global inputs AR and B at the
command line. Use the -args option to specify that the input u is a real, scalar
double. By default, codegen generates a MEX function, use_globals_mex,
in the current folder.

codegen -globals {'AR',ones(4),'B',[1 2 3]} use_globals -args {0}

Alternatively, specify the type and initial value with the -globals flag using
the format -globals {'g', {type, initial_value}}.

Defining Variable-Size Global Data. To provide initial values for
variable-size global data, specify the type and initial value with the -globals
flag using the format -globals {'g', {type, initial_value}}. For
example, to specify a global variable g1 that has an initial value [1 1] and
upper bound [2 2], enter:

codegen foo -globals {'g1', {coder.typeof(0, [2 2],1),[1 1]}}

For a detailed explanation of the syntax, see coder.typeof.

Synchronizing Global Data with MATLAB

Why Synchronize Global Data?
The generated MEX function and MATLAB each have their own copies of
global data. To make these copies consistent, you must synchronize their
global data whenever the two interact. If you do not synchronize the data,

19-79

19 Generating C/C++ Code from MATLAB® Code

their global variables might differ. The level of interaction determines when
to synchronize global data. For more information, see “When to Synchronize
Global Data” on page 19-80.

When to Synchronize Global Data
By default, synchronization between the MEX function’s global data and
MATLAB occurs at MEX function entry and exit and for extrinsic calls. Use
this synchronization method for maximum consistency between the MEX
function and MATLAB.

To improve performance, you can:

• Select to synchronize only at MEX function entry and exit points.

• Disable synchronization when the global data does not interact.

• Choose whether to synchronize before and after each extrinsic call.

The following table summarizes which global data synchronization options
to use. To learn how to set these options, see “How to Synchronize Global
Data” on page 19-81.

19-80

Generate Code for Global Data

Global Data Synchronization Options

If you want to... Set the
global data
synchronization
mode to:

Synchronize before
and after extrinsic
calls?

Have maximum consistency
when all extrinsic calls
modify global data.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Default behavior.

Have maximum consistency
when most extrinsic calls
modify global data, but a
few do not.

At MEX-function
entry, exit and
extrinsic calls
(default)

Yes. Use the
coder.extrinsic
-sync:off option to
turn off synchronization
for the extrinsic calls
that do not change global
data.

Have maximum consistency
when most extrinsic calls
do not modify global data,
but a few do.

At MEX-function
entry and exit

Yes. Use the
coder.extrinsic
-sync:on option to
synchronize only the calls
that modify global data.

Maximize performance
when synchronizing global
data, and none of your
extrinsic calls modify global
data.

At MEX-function
entry and exit

No.

Communicate between
generated MEX functions
only. No interaction
between MATLAB and
MEX function global data.

Disabled No.

How to Synchronize Global Data
To control global data synchronization, set the global data synchronization
mode and select whether to synchronize extrinsic functions. For guidelines on
which options to use, see “When to Synchronize Global Data” on page 19-80.

19-81

19 Generating C/C++ Code from MATLAB® Code

You can control the global data synchronization mode from the project
settings dialog box, the command line, or a MEX configuration dialog box.
You control the synchronization of data with extrinsic functions using the
coder.extrinsic -sync:on and -sync:off options.

Controlling the Global Data Synchronization Mode in the Project
Settings Dialog Box.

1 On the MATLAB Coder project Build tab, verify that Output type is set
to MEX Function and then click the More settings link.

2 On the Project Settings dialog box Memory tab, set Global data
synchronization mode to At MEX-function entry and exit or
Disabled, as applicable.

Controlling the Global Data Synchronization Mode from the
Command Line.

1 In the MATLAB workspace, define the code generation configuration object.
At the MATLAB command line, enter:

mexcfg = coder.config('mex');

2 At the MATLAB command line, set the GlobalDataSyncMethod property to
SyncAtEntryAndExits or NoSync, as applicable. For example:

mexcfg.GlobalDataSyncMethod = 'SyncAtEntryAndExits';

3 When compiling your code, use the mexcfg configuration object. For
example, to generate a MEX function for function foo that has no inputs:

codegen -config mexcfg foo

Controlling Synchronization for Extrinsic Function Calls. To control
whether synchronization between MATLAB and MEX function global
data occurs before and after you call an extrinsic function, use the
coder.extrinsic-sync:on and -sync:off options.

By default, global data is:

19-82

Generate Code for Global Data

• Synchronized before and after each extrinsic call, if the global data
synchronization mode is At MEX-function entry, exit and extrinsic
calls. If you are sure that certain extrinsic calls do not change global data,
turn off synchronization for these calls using the -sync:off option. For
example, if functions foo1 and foo2 do not change global data, turn off
synchronization for these functions:

coder.extrinsic('-sync:off', 'foo1', 'foo2');

• Not synchronized, if the global data synchronization mode is At
MEX-function entry and exit. If the code has a few extrinsic calls that
change global data, turn on synchronization for these calls using the
-sync:on option. For example, if functions foo1 and foo2 change global
data, turn on synchronization for these functions:

coder.extrinsic('-sync:on', 'foo1', 'foo2');

• Not synchronized, if the global data synchronization mode is Disabled.
When synchronization is disabled, you cannot use the -sync:on option to
control the synchronization for specific extrinsic calls.

Limitations of Using Global Data
You cannot use global data with the coder.cstructname function.

19-83

19 Generating C/C++ Code from MATLAB® Code

Generation of Traceable Code

In this section...

“About Code Traceability” on page 19-84

“Generate Traceable Code” on page 19-85

“Format of Traceability Tags” on page 19-87

“Location of Comments in Generated Code” on page 19-87

“Traceability Limitations” on page 19-92

About Code Traceability
You can configure MATLAB Coder to generate C code and MEX functions that
include the MATLAB source code as comments. Including this information in
the generated code enables you to:

• Correlate the generated code with your source code.

• Understand how the generated code implements your algorithm.

• Evaluate the quality of the generated code.

In these automatically generated comments, a traceability tag immediately
precedes each line of source code. This traceability tag provides details
about the location of the source code. For more information, see “Format
of Traceability Tags” on page 19-87.

For Embedded Coder projects, (requires an Embedded Coder license), you can
also generate C/C++ code that includes the MATLAB function help text. The
function help text is the first comment after the MATLAB function signature.
It is displayed in the function banner of the generated code. The function help
text provides information about the capabilities of the function and how to
use it. For more information, see “Tracing Between Generated C Code and
MATLAB Code”.

19-84

Generation of Traceable Code

Generate Traceable Code
To generate more traceable code, include MATLAB source code as comments
in the generated code from the Project Settings dialog box, the command
line, or a MEX configuration dialog box.

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click theMore settings link to view the project settings
for the selected output type.

Note MEX functions use a different set of configuration parameters than
C/C++ libraries and executables. When you switch the output type between
MEX Function and C/C++ Static Library, C/C++ Dynamic Library
or C/C++ Executable, verify these settings. For more information, see
“Changing Output Type” on page 16-42.

3 In the Project Settings dialog box, click the Comments tab.

4 On the Code Appearance tab, select MATLAB source code as
comments and then close the dialog box.

At the Command Line

For MEX Targets. Use the MATLABSourceComments option of the MEX
configuration object. For example, to compile the file foo.m and include the
source code as comments in the generated MEX function:

1 In the MATLAB workspace, define the MEX configuration object by issuing
a constructor command:

mexcfg = coder.config('mex');

2 From the command line, enable the MATLABSourceComments:

mexcfg.MATLABSourceComments = true;

19-85

19 Generating C/C++ Code from MATLAB® Code

3 Using the -config option, pass the configuration object to codegen. For
example, to generate a MEX function for a function foo that has no input
parameters:

codegen -config mexcfg foo

For C/C++ Libraries. Use the MATLABSourceComments option of the code
generation configuration object. For example, to compile the file foo.m and
include the source code as comments in the generated code for a C static
library:

1 Create a code generation configuration object and enable the
MATLABSourceComments option. For example, to create a configuration
object for a static library:

cfg = coder.config('lib');
% If an Embedded Coder license is available,
% cfg is a coder.EmbeddedCodeConfig object,
% otherwise it's a coder.CodeConfig object
cfg.MATLABSourceComments = true;

2 Using the -config option, pass the configuration object to codegen.
For example, to generate a library for a function foo that has no input
parameters:

codegen -config cfg foo

For Embedded Coder projects (requires an Embedded Coder license), you can
also include the function help text in the generated code function banner
using the MATLABFcnDesc option. For more information, see “Tracing Between
Generated C Code and MATLAB Code”.

For C/C++ Executables. Use the MATLABSourceComments option of the code
generation configuration object. For example, to compile the file foo.m and
include the source code as comments in the generated code for a C executable:

1 Create a code generation configuration object and enable the
MATLABSourceComments option. For example, to create a configuration
object for a library:

cfg = coder.config('exe');

19-86

Generation of Traceable Code

% If an Embedded Coder license is available,
% cfg is a coder.EmbeddedCodeConfig object,
% otherwise it's a coder.CodeConfig object
cfg.MATLABSourceComments = true;

2 Using the -config option, pass the configuration object to codegen. For
example, to generate an executable for a function foo that has no input
parameters:

codegen -config cfg main.c foo
% You must specify a main file when generating an executable

For Embedded Coder projects, (requires an Embedded Coder license), you can
also include the function help text in the function banner of the generated
code using the MATLABFcnDesc option. For more information, see “Tracing
Between Generated C Code and MATLAB Code”.

Format of Traceability Tags
In the generated code, traceability tags appear immediately before the
MATLAB source code in the comment. The format of the tag is:
<filename>:<line number>.

For example, the comment indicates that the code x = r * cos(theta);
appears at line 4 in the source file straightline.m.

/* 'straightline:4' x = r * cos(theta); */

Note With an Embedded Coder license, the traceability tags in the code
generation report are hyperlinks to the MATLAB source code. For more
information, see “Tracing Between Generated C Code and MATLAB Code”.

Location of Comments in Generated Code
The auto-generated comments containing the source code and traceability tag
appear in the generated code as follows.

19-87

19 Generating C/C++ Code from MATLAB® Code

Straight-Line Source Code
In straight-line source code without if, while, for or switch statements,
the comment containing the source code precedes the generated code that
implements the source code statement. This comment appears after user
comments that precede the generated code.

For example, in the following code, the user comment, /* Convert polar
to Cartesian */, appears before the automatically generated comment
containing the first line of source code, together with its traceability tag,
/* 'straightline:4' x = r * cos(theta); */.

MATLAB Code.

function [x y] = straightline(r,theta)
%#codegen
% Convert polar to Cartesian
x = r * cos(theta);
y = r * sin(theta);

Commented C Code.

void straightline(double r, double theta, double *x, double *y)
{

/* Convert polar to Cartesian */
/* 'straightline:4' x = r * cos(theta); */
*x = r * cos(theta);

/* 'straightline:5' y = r * sin(theta); */
*y = r * sin(theta);

}

If Statements
The comment for the if statement immediately precedes the code that
implements the statement. This comment appears after user comments that
precede the generated code. The comments for the elseif and else clauses
appear immediately after the code that implements the clause, and before the
code generated for statements in the clause.

19-88

Generation of Traceable Code

MATLAB Code.

function y = ifstmt(u,v)
%#codegen
if u > v

y = v + 10;
elseif u == v

y = u * 2;
else

y = v - 10;
end

Commented C Code.

double ifstmt(double u, double v)
{

double y;

/* 'ifstmt:3' if u > v */
if (u > v) {

/* 'ifstmt:4' y = v + 10; */
y = v + 10.0;

} else if (u == v) {
/* 'ifstmt:5' elseif u == v */
/* 'ifstmt:6' y = u * 2; */
y = u * 2.0;

} else {
/* 'ifstmt:7' else */
/* 'ifstmt:8' y = v - 10; */
y = v - 10.0;

}

return y;
}

For Statements
The comment for the for statement header immediately precedes the
generated code that implements the header. This comment appears after user
comments that precede the generated code.

19-89

19 Generating C/C++ Code from MATLAB® Code

MATLAB Code.

function y = forstmt(u)
%#codegen
y = 0;
for i=1:u

y = y + 1;
end

Commented C Code.

double forstmt(double u)
{

double y;
int i;

/* 'forstmt:3' y = 0; */
y = 0.0;

/* 'forstmt:4' for i=1:u */
for (i = 0; i < (int)u; i++) {

/* 'forstmt:5' y = y + 1; */
y++;

}

return y;
}

While Statements
The comment for the while statement header immediately precedes the
generated code that implements the statement header. This comment appears
after user comments that precede the generated code.

MATLAB Code.

function y = subfcn(y)
coder.inline('never');
while y < 100

y = y + 1;
end

19-90

Generation of Traceable Code

Commented C Code.

void subfcn(double *y)
{

/* 'subfcn:2' coder.inline('never'); */
/* 'subfcn:3' while y < 100 */
while (*y < 100.0) {

/* 'subfcn:4' y = y + 1; */
(*y)++;

}
}

Switch Statements
The comment for the switch statement header immediately precedes the
generated code that implements the statement header. This comment appears
after user comments that precede the generated code. The comments for the
case and otherwise clauses appear immediately after the generated code
that implements the clause, and before the code generated for statements
in the clause.

MATLAB Code.

function y = switchstmt(u)
%#codegen
y = 0;
switch u

case 1
y = y + 1;

case 3
y = y + 2;

otherwise
y = y - 1;

end

Commented C Code.

double switchstmt(double u)

19-91

19 Generating C/C++ Code from MATLAB® Code

{
double y;

/* 'switchstmt:3' y = 0; */
/* 'switchstmt:4' switch u */
switch ((int)u) {
case 1:
/* 'switchstmt:5' case 1 */
/* 'switchstmt:6' y = y + 1; */
y = 1.0;
break;

case 3:
/* 'switchstmt:7' case 3 */
/* 'switchstmt:8' y = y + 2; */
y = 2.0;
break;

default:
/* 'switchstmt:9' otherwise */
/* 'switchstmt:10' y = y - 1; */
y = -1.0;
break;

}

return y;
}

Traceability Limitations
For MATLAB Coder, there are traceability limitations:

• You cannot include MATLAB source code as comments for:

- MathWorks toolbox functions

- P-code

• The appearance or location of comments can vary depending on the
following conditions:

- Even if the implementation code is eliminated, for example, due to
constant folding, comments might still appear in the generated code.

19-92

Generation of Traceable Code

- If a complete function or code block is eliminated, comments might be
eliminated from the generated code.

- For certain optimizations, the comments might be separated from the
generated code.

- Even if you do not choose to include source code comments in the
generated code, the generated code includes legally required comments
from the MATLAB source code.

19-93

19 Generating C/C++ Code from MATLAB® Code

Generate Code for Enumerated Types
When generating MEX functions from MATLAB code, use enumerated
types based on int32 with MATLAB Coder . When generating C code with
MATLAB Coder, you can also use this enumerated type, but int32 does not
provide methods for customizing the behavior of enumerated data.

19-94

Generate Code for Variable-Size Data

Generate Code for Variable-Size Data

In this section...

“Disable Support for Variable-Size Data” on page 19-95

“Control Dynamic Memory Allocation” on page 19-96

“Generating Code for MATLAB Functions with Variable-Size Data” on
page 19-98

“Generate Code for a MATLAB Function That Expands a Vector in a Loop”
on page 19-100

“Using Dynamic Memory Allocation for an "Atoms" Simulation” on page
19-107

Variable-size data is data whose size might change at run time. You can
use MATLAB Coder to generate C/C++ code from MATLAB code that uses
variable-size data. MATLAB supports bounded and unbounded variable-size
data for code generation. Bounded variable-size data has fixed upper bounds.
This data can be allocated statically on the stack or dynamically on the
heap. Unbounded variable-size data does not have fixed upper bounds. This
data must be allocated on the heap. By default, for MEX and C/C++ code
generation, support for variable-size data is enabled and dynamic memory
allocation is enabled for variable-size arrays whose size is greater than or
equal to a configurable threshold.

Disable Support for Variable-Size Data
By default, for MEX and C/C++ code generation, support for variable-size
data is enabled. You modify variable sizing settings from the project settings
dialog box, the command line, or using dialog boxes.

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click theMore settings link to view the project settings
for the selected output type.

3 In the Project Settings dialog box, click the General tab.

19-95

19 Generating C/C++ Code from MATLAB® Code

4 On the Memory tab, select or clear Enable variable-sizing. Close the
dialog box.

At the Command Line

1 Create a configuration object for code generation. For example, for a library:

cfg = coder.config('lib');

2 Set the EnableVariableSizing option:

cfg.EnableVariableSizing = false;

3 Using the -config option, pass the configuration object to codegen :

codegen -config cfg foo

Control Dynamic Memory Allocation
By default, dynamic memory allocation is enabled for variable-size arrays
whose size is greater than or equal to a configurable threshold. If you disable
support for variable-size data (see “Disable Support for Variable-Size Data”
on page 19-95), you also disable dynamic memory allocation. You can modify
dynamic memory allocation settings from the project settings dialog box or
the command line.

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click theMore settings link to view the project settings
for the selected output type.

3 In the Project Settings dialog box, click the Memory tab.

4 On the Memory tab, set Dynamic memory allocation to one of the
following options:

19-96

Generate Code for Variable-Size Data

Setting Action

Never Dynamic memory allocation is
disabled. Variable-size data is
allocated statically on the stack.

For all variable-sized arrays Dynamic memory allocation is
enabled for variable-size arrays.
Variable-size data is allocated
dynamically on the heap.

For arrays with maximum size
at or above threshold

Dynamic memory allocation
is enabled for variable-size
arrays whose size is greater
than or equal to the Dynamic
memory allocation threshold.
Variable-size arrays whose size
is less than this threshold are
allocated on the stack.

5 Optionally, if you set Dynamic memory allocation to For arrays with
maximum size at or above threshold, configure Dynamic memory
allocation threshold to fine tune memory allocation.

6 Close the dialog box.

At the Command Line

1 Create a configuration object for code generation. For example, for a MEX
function:

mexcfg = coder.config('mex');

2 Set the DynamicMemoryAllocation option:

19-97

19 Generating C/C++ Code from MATLAB® Code

Setting Action

mexcfg.DynamicMemoryAllocation='Off';
Dynamic memory allocation
is disabled. Variable-size
data is allocated statically
on the stack.

mexcfg.DynamicMemoryAllocation='AllVariableSizeArrays';
Dynamic memory allocation
is enabled for variable-size
arrays. Variable-size data is
allocated dynamically on the
heap.

mexcfg.DynamicMemoryAllocation='Threshold';
Dynamic memory allocation
is enabled for variable-size
arrays whose size (in bytes)
is greater than or equal
to the value specified
using the Dynamic memory
allocation threshold
parameter. Variable-size
arrays whose size is less than
this threshold are allocated
on the stack.

3 Optionally, if you set Dynamic memory allocation to `Threshold',
configure Dynamic memory allocation threshold to fine tune memory
allocation.

4 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg foo

Generating Code for MATLAB Functions with
Variable-Size Data
Here is a basic workflow that first generates MEX code for verifying the
generated code and then generates standalone code after you are satisfied
with the result of the prototype.

19-98

Generate Code for Variable-Size Data

To work through these steps with a simple example, see “Generate Code for a
MATLAB Function That Expands a Vector in a Loop” on page 19-100

1 In the MATLAB Editor, add the compilation directive %#codegen at the
top of your function.

This directive:

• Indicates that you intend to generate code for the MATLAB algorithm

• Turns on checking in the MATLAB Code Analyzer to detect potential
errors during code generation

2 Address issues detected by the Code Analyzer.

In some cases, the MATLAB Code Analyzer warns you when your code
assigns data a fixed size but later grows the data, such as by assignment
or concatenation in a loop. If that data is supposed to vary in size at run
time, you can ignore these warnings.

3 Generate a MEX function using codegen to verify the generated code. Use
the following command-line options:

• -args {coder.typeof...} if you have variable-size inputs

• -report to generate a code generation report

For example:

codegen -report foo -args {coder.typeof(0,[2 4],1)}

This command uses coder.typeof to specify one variable-size input for
function foo. The first argument, 0, indicates the input data type (double)
and complexity (real). The second argument, [2 4], indicates the size, a
matrix with two dimensions. The third argument, 1, indicates that the
input is variable sized. The upper bound is 2 for the first dimension and 4
for the second dimension.

19-99

19 Generating C/C++ Code from MATLAB® Code

Note During compilation, codegen detects variables and structure fields
that change size after you define them, and reports these occurrences as
errors. In addition, codegen performs a run-time check to generate errors
when data exceeds upper bounds.

4 Fix size mismatch errors:

Cause: How To Fix: For More
Information:

You try to change the
size of data after its
size has been locked.

Declare the data to be
variable sized.

See “Diagnosing and
Fixing Size Mismatch
Errors” on page 7-23.

5 Fix upper bounds errors

Cause: How To Fix: For More
Information:

MATLAB cannot
determine or
compute the upper
bound

Specify an upper
bound.

See “Specifying
Upper Bounds for
Variable-Size Data”
on page 7-6 and
“Diagnosing and Fixing
Size Mismatch Errors”
on page 7-23.

MATLAB attempts
to compute an upper
bound for unbounded
variable-size data.

If the data is
unbounded, enable
dynamic memory
allocation.

See “Control Dynamic
Memory Allocation” on
page 19-96.

6 Generate C/C++ code using the codegen function.

Generate Code for a MATLAB Function That Expands
a Vector in a Loop

• “About the MATLAB Function uniquetol” on page 19-101

19-100

Generate Code for Variable-Size Data

• “Step 1: Add Compilation Directive for Code Generation” on page 19-101

• “Step 2: Address Issues Detected by the Code Analyzer” on page 19-102

• “Step 3: Generate MEX Code” on page 19-102

• “Step 4: Fix the Size Mismatch Error” on page 19-104

• “Step 5: Generate C Code” on page 19-105

• “Step 6: Change the Dynamic Memory Allocation Threshold” on page
19-106

About the MATLAB Function uniquetol
This example uses the function uniquetol. This function returns in vector B a
version of input vector A, where the elements are unique to within tolerance
tol of each other. In vector B, abs(B(i) - B(j)) > tol for all i and j. Initially,
assume input vector A can store up to 100 elements.

function B = uniquetol(A, tol)
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

Step 1: Add Compilation Directive for Code Generation
Add the %#codegen compilation directive at the top of the function:

function B = uniquetol(A, tol) %#codegen
A = sort(A);
B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

19-101

19 Generating C/C++ Code from MATLAB® Code

end
end

Step 2: Address Issues Detected by the Code Analyzer
The Code Analyzer detects that variable B might change size in the for-loop.
It issues this warning:

The variable 'B' appears to change size on every loop iteration.
Consider preallocating for speed.

In this function, vector B should expand in size as it adds values from vector A.
Therefore, you can ignore this warning.

Step 3: Generate MEX Code
To generate MEX code, use the codegen function.

1 Generate a MEX function for uniquetol:

codegen -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

What do these command-line options mean?

The -args option specifies the class, complexity, and size of each input to
function uniquetol:

• The first argument, coder.typeof, defines a variable-size input. The
expression coder.typeof(0,[1 100],1) defines input A as a real double
vector with a fixed upper bound. Its first dimension is fixed at 1 and its
second dimension can vary in size up to 100 elements.

For more information, see “Specify Variable-Size Inputs at the Command
Line” on page 19-50.

• The second argument, coder.typeof(0), defines input tol as a real
double scalar.

The -report option instructs codegen to generate a code generation report,
regardless of whether errors or warnings occur.

19-102

Generate Code for Variable-Size Data

For more information, see the codegen reference page.

Executing this command generates a compiler error:

??? Size mismatch (size [1 x 1] ~= size [1 x 2]).
The size to the left is the size
of the left-hand side of the assignment.

2 Open the error report and select the Variables tab.

The error indicates a size mismatch between the left-hand side and right-hand
side of the assignment statement B = [B A(i)];. The assignment B =
A(1) establishes the size of B as a fixed-size scalar (1 x 1). Therefore, the
concatenation of [B A(i)] creates a 1 x 2 vector.

19-103

19 Generating C/C++ Code from MATLAB® Code

Step 4: Fix the Size Mismatch Error
To fix this error, declare B to be a variable-size vector.

1 Add this statement to the uniquetol function:

coder.varsize('B');

It should appear before B is used (read). For example:

function B = uniquetol(A, tol) %#codegen
A = sort(A);

coder.varsize('B');

B = A(1);
k = 1;
for i = 2:length(A)

if abs(A(k) - A(i)) > tol
B = [B A(i)];
k = i;

end
end

The function coder.varsize declares every instance of B in uniquetol
to be variable sized.

2 Generate code again using the same command:

codegen -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

In the current folder, codegen generates a MEX function for uniquetol
and provides a link to the code generation report.

3 Click the View report link.

4 In the code generation report, select the Variables tab.

19-104

Generate Code for Variable-Size Data

The size of variable B is 1x:?, indicating that it is variable size with no
upper bounds.

Step 5: Generate C Code
Generate C code for variable-size inputs. By default, codegen allocates
memory statically for data whose size is less than the dynamic memory
allocation threshold of 64 kilobytes. If the size of the data is greater than
or equal to the threshold or is unbounded, codegen allocates memory
dynamically on the heap.

1 Create a configuration option for C library generation:

cfg=coder.config('lib');

2 Issue this command:

19-105

19 Generating C/C++ Code from MATLAB® Code

codegen -config cfg -report uniquetol -args {coder.typeof(0,[1 100],1),coder.typeof(0)}

codegen generates a static library in the default location,
codegen\lib\uniquetol and provides a link to the code generation report.

3 Click the View report link.

4 In the code generation report, click the C code tab.

5 On the C code tab, click the link to uniquetol.h.

The function declaration is:

extern void uniquetol(const double A_data[100], const int A_size[2],...
double tol, emxArray_real_T *B);

codegen computes the size of A and, because its maximum size is less
than the default dynamic memory allocation threshold of 64k bytes,
allocates this memory statically. The generated code contains two pieces of
information about A:

• double A_data[100]: the maximum size of input A (where 100 is the
maximum size specified using coder.typeof).

• int A_size[2]: the actual size of the input.

Because B is variable size with unknown upper bounds, in the generated
code, codegen represents B as emxArray_real_T. MATLAB provides utility
functions for creating and interacting with emxArrays in your generated
code. For more information, see “C Code Interface for Arrays” on page 7-19.

Step 6: Change the Dynamic Memory Allocation Threshold
In this step, you reduce the dynamic memory allocation threshold and
generate code for an input that exceeds this threshold.

1 Set the dynamic memory allocation threshold to 4 kilobytes and generate
code where the size of input A exceeds this threshold.

19-106

Generate Code for Variable-Size Data

cfg.DynamicMemoryAllocationThreshold=4096;
codegen -config cfg -report uniquetol -args {coder.typeof(0,[1 10000],1),coder.typeof(0)}

2 View the generated code in the report. Because the maximum size of input
A now exceeds the dynamic memory allocation threshold, codegen allocates
A dynamically on the heap and represents A as emxArray_real_T.

extern void uniquetol(const emxArray_real_T *A, ...
double tol, emxArray_real_T *B);

Using Dynamic Memory Allocation for an "Atoms"
Simulation
This example shows how to generate code for a MATLAB algorithm that
runs a simulation of bouncing "atoms" and returns the result after a number
of iterations. There are no upper bounds on the number of atoms that the
algorithm accepts, so this example takes advantage of dynamic memory
allocation.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd).
The new folder will contain only the files that are relevant for this example. If
you do not want to affect the current folder (or if you cannot generate files in
this folder), change your working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_atoms');

About the ’run_atoms’ Function

The run_atoms.m function runs a simulation of bouncing atoms (also applying
gravity and energy loss).

help run_atoms

atoms = run_atoms(atoms,n)
atoms = run_atoms(atoms,n,iter)
Where 'atoms' the initial and final state of atoms (can be empty)

19-107

19 Generating C/C++ Code from MATLAB® Code

'n' is the number of atoms to simulate.
'iter' is the number of iterations for the simulation

(if omitted it is defaulted to 3000 iterations.)

Set Up Code Generation Options

Create a code generation configuration object

cfg = coder.config;
% Enable dynamic memory allocation for variable size matrices.
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Set Up Example Inputs

Create a template structure ’Atom’ to provide the compiler with the necessary
information about input parameter types. An atom is a structure with four
fields (x,y,vx,vy) specifying position and velocity in Cartesian coordinates.

atom = struct('x', 0, 'y', 0, 'vx', 0, 'vy', 0);

Generate a MEX Function for Testing

Use the command ’codegen’ with the following arguments:

’-args {coder.typeof(atom, [1 Inf]),0,0}’ indicates that the first argument is a
row vector of atoms where the number of columns is potentially infinite. The
second and third arguments are scalar double values.

’-config cfg’ enables dynamic memory allocation, defined by workspace
variable cfg

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),0,0} -config cfg -o ru

Run the MEX Function

The MEX function simulates 10000 atoms in approximately 1000 iteration
steps given an empty list of atoms. The return value is the state of all the
atoms after simulation is complete.

atoms = run_atoms_mex([],10000,1000)

19-108

Generate Code for Variable-Size Data

atoms =

1x10000 struct array with fields:

x
y
vx
vy

Run the MEX Function Again

Continue the simulation with another 500 iteration steps

atoms = run_atoms_mex(atoms,10000,500)

atoms =

1x10000 struct array with fields:

x
y
vx
vy

Generate a Standalone C Code Library

To generate a C library, create a standard configuration object for libraries:

cfg = coder.config('lib');

Enable dynamic memory allocation

cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

19-109

19 Generating C/C++ Code from MATLAB® Code

In MATLAB the default data type is double. However, integers are usually
used in C code, so pass int32 integer example values to represent the number
of atoms and iterations.

codegen run_atoms -args {coder.typeof(atom, [1 Inf]),int32(0),int32(0)} -co

Inspect Generated Code

When creating a library the code is generated in the folder
codegen/lib/run_atoms/ The code in this folder is self contained. To interface
with the compiled C code you need only the generated header files and the
library file.

dir codegen/lib/run_atoms

. rt_nonfinite.obj run_atoms_initialize.c

.. rtw_proj.tmw run_atoms_initialize.h
buildInfo.mat rtwtypes.h run_atoms_initialize.ob
codeInfo.mat run_atoms.c run_atoms_ref.rsp
interface run_atoms.h run_atoms_rtw.bat
rtGetInf.c run_atoms.lib run_atoms_rtw.mk
rtGetInf.h run_atoms.obj run_atoms_terminate.c
rtGetInf.obj run_atoms_emxAPI.c run_atoms_terminate.h
rtGetNaN.c run_atoms_emxAPI.h run_atoms_terminate.obj
rtGetNaN.h run_atoms_emxAPI.obj run_atoms_types.h
rtGetNaN.obj run_atoms_emxutil.c
rt_nonfinite.c run_atoms_emxutil.h
rt_nonfinite.h run_atoms_emxutil.obj

Write a C Main Function

Typically, the main function is platform-dependent code that performs
rendering or some other processing. In this example, a pure ANSI-C function
produces a file ’run_atoms_state.m’ which (when run) contains the final state
of the atom simulation.

type run_atoms_main.c

19-110

Generate Code for Variable-Size Data

/* Include standard C libraries */
#include <stdio.h>

/* The interface to the main function we compiled. */
#include "codegen/lib/run_atoms/run_atoms.h"

/* The interface to EMX data structures. */
#include "codegen/lib/run_atoms/run_atoms_emxAPI.h"

int main(int argc, char **argv)
{

int i;
emxArray_Atom *atoms;

/* Main arguments unused */
(void) argc;
(void) argv;

/* Initially create an empty row vector of atoms (1 row, 0 columns) */
atoms = emxCreate_Atom(1, 0);

/* Call the function to simulate 10000 atoms in 1000 iteration steps */
run_atoms(atoms, 10000, 1000);

/* Call the function again to do another 500 iteration steps */
run_atoms(atoms, 10000, 500);

/* Print the result to standard output */
for (i = 0; i < atoms->size[1]; i++) {

printf("%f %f %f %f\n",
atoms->data[i].x, atoms->data[i].y, atoms->data[i].vx, atoms->d

}

/* Free memory */
emxDestroyArray_Atom(atoms);
return(0);

}

Create a Configuration Object for Executables

19-111

19 Generating C/C++ Code from MATLAB® Code

cfg = coder.config('exe');
cfg.DynamicMemoryAllocation = 'AllVariableSizeArrays';

Generate a Standalone Executable

You must pass the function (run_atoms.m) as well as custom C code
(run_atoms_main.c) The ’codegen’ command automatically generates C code
from the MATLAB code, then calls the C compiler to bundle this generated
code with the custom C code (run_atoms_main.c).

codegen run_atoms run_atoms_main.c -args {coder.typeof(atom, [1 Inf]),int32

Run the Executable

After simulation is complete, this produces the file ’atoms_state.mat’. The
MAT file is a 10000x4 matrix, where each row is the position and velocity of
an atom (x, y, vx, vy) representing the current state of the whole system.

[~,atoms_data] = system(['.' filesep 'run_atoms']);
fh = fopen('atoms_state.mat', 'w');
fprintf(fh, '%s', atoms_data);
fclose(fh);

Fetch the State

Running the executable produced ’atoms_state.mat’. Now, recreate the
structure array from the saved matrix

load atoms_state.mat -ascii
clear atoms
for i = 1:size(atoms_state,1)

atoms(1,i).x = atoms_state(i,1);
atoms(1,i).y = atoms_state(i,2);
atoms(1,i).vx = atoms_state(i,3);
atoms(1,i).vy = atoms_state(i,4);

end

Render the State

Call ’run_atoms_mex’ with zero iterations to render only

19-112

Generate Code for Variable-Size Data

run_atoms_mex(atoms, 10000, 0);

Clean Up

Remove files and return to original folder

Run Command: Cleanup

if ispc

19-113

19 Generating C/C++ Code from MATLAB® Code

delete run_atoms.exe
else

delete run_atoms
end
delete atoms_state.mat
cleanup

19-114

Code Generation for MATLAB® Classes

Code Generation for MATLAB Classes
You can generate code for MATLAB value and handle classes and user-defined
System objects that inherit from a handle class. For more information, see
“MATLAB Classes”.

19-115

19 Generating C/C++ Code from MATLAB® Code

How MATLAB Coder Partitions Generated Code

In this section...

“Partitioning Generated Files” on page 19-116

“How to Select the File Partitioning Method” on page 19-116

“Partitioning Generated Files with One C/C++ File Per MATLAB File”
on page 19-117

“Generated Files and Locations” on page 19-122

“File Partitioning and Inlining” on page 19-125

Partitioning Generated Files
By default, during code generation, MATLAB Coder partitions the code to
match your MATLAB file structure. This one-to-one mapping lets you easily
correlate your files generated in C/C++ with the compiled MATLAB code.
MATLAB Coder cannot produce the same one-to-one correspondence for
MATLAB functions that are inlined in generated code (see “File Partitioning
and Inlining” on page 19-125).

Alternatively, you can select to generate all C/C++ functions into a single
file. For more information, see “How to Select the File Partitioning Method”
on page 19-116. This option facilitates integrating your code with existing
embedded software.

How to Select the File Partitioning Method

In the Project Settings Dialog Box

1 In the MATLAB Coder project, click the Build tab.

2 On the Build tab, click theMore settings link to view the project settings
for the selected output type.

3 In the Project Settings dialog box, click the Code Appearance tab.

19-116

How MATLAB® Coder™ Partitions Generated Code

4 On the Code Appearance tab, set the Generated file partitioning
method to Generate one file for each MATLAB file or Generate all
functions into a single file. Close the dialog box.

At the Command Line
Use the codegen configuration object FilePartitionMethod option. For
example, to compile the function foo that has no inputs and generate one
C/C++ file for each MATLAB function:

1 Create a MEX configuration object and set the FilePartitionMethod
option:

mexcfg = coder.config('mex');
mexcfg.FilePartitionMethod = 'MapMFileToCFile';

2 Using the -config option, pass the configuration object to codegen:

codegen -config mexcfg -O disable:inline foo
% Disable inlining to generate one C/C++ file for each MATLAB function

Partitioning Generated Files with One C/C++ File Per
MATLAB File
By default, for MATLAB functions that are not inlined, MATLAB Coder
generates one C/C++ file for each MATLAB file. In this case, MATLAB Coder
partitions generated C/C++ code so that it corresponds to your MATLAB files.

How MATLAB Coder Partitions Entry-Point MATLAB Functions
For each entry-point (top-level) MATLAB function, MATLAB Coder generates
one C/C++ source, header, and object file with the same name as the MATLAB
file.

For example, suppose you define a simple function foo that calls the function
identity. The source file foo.m contains the following code:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

19-117

19 Generating C/C++ Code from MATLAB® Code

Here is the code for identity.m :

function y = identity(u) %#codegen
y = u;

In the MATLAB Coder project interface, to generate a C static library for
foo.m:

1 First, define the inputs u and v. For more information, see “Specifying
Properties of Primary Function Inputs in a Project” on page 16-7.

2 In the MATLAB Coder project, click the Build tab.

3 On the Build tab:

a Set the Output type to C/C++ Static Library.

b Click theMore settings link to view the project settings for the selected
output type.

c In the Project Settings dialog box, click the All Settings tab.

d On this tab, under Function Inlining, set the Inline threshold
parameter to 0.

4 Click Build to generate a library.

To generate a C static library for foo.m at the command line, enter:

codegen -config:lib -O disable:inline foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

MATLAB Coder generates source, header, and object files for foo and
identity in your output folder.

19-118

How MATLAB® Coder™ Partitions Generated Code

How MATLAB Coder Partitions Local Functions
For each local function, MATLAB Coder generates code in the same C/C++
file as the calling function. For example, suppose you define a function foo
that calls a local function identity:

function y = foo(u,v) %#codegen
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

function y = identity(u)
y = u;

To generate a C++ library, before generating code, select a C++ compiler and
set C++ as your target language. For example, at the command line:

19-119

19 Generating C/C++ Code from MATLAB® Code

1 Select C++ as your target language:

cfg = coder.config('lib')
cfg.TargetLang='C++'

2 Generate the C++ library:

codegen -config cfg foo -args {0, 0}
% Use the -args option to specify that u and v are both
% real, scalar doubles

In the primary function foo, MATLAB Coder inlines the code for the
identity local function.

Note If you specify C++, MATLAB Coder wraps the C code into .cpp
files so that you can use a C++ compiler and interface with external C++
applications. It does not generate C++ classes.

Here is an excerpt of the generated code in foo.cpp:

19-120

How MATLAB® Coder™ Partitions Generated Code

...
/* Function Definitions */
double foo(double u, double v)
{

return (double)(float)u + v;
}
...

How MATLAB Coder Partitions Overloaded Functions
An overloaded function is a function that has multiple implementations to
accommodate different classes of input. For each implementation (that is
not inlined), MATLAB Coder generates a separate C/C++ file with a unique
numeric suffix.

For example, suppose you define a simple function multiply_defined:

%#codegen
function y = multiply_defined(u)

y = u+1;

You then add two more implementations of multiply_defined, one to handle
inputs of type single (in an @single subfolder) and another for inputs of
type double (in an @double subfolder).

To call each implementation, define the function call_multiply_defined:

%#codegen
function [y1,y2,y3] = call_multiply_defined

y1 = multiply_defined(int32(2));
y2 = multiply_defined(2);
y3 = multiply_defined(single(2));

Next, generate C code for the overloaded function multiply_defined. For
example, at the MATLAB command line, enter:

codegen -O disable:inline -config:lib call_multiply_defined

19-121

19 Generating C/C++ Code from MATLAB® Code

MATLAB Coder generates C source, header, and object files for each
implementation of multiply_defined, as highlighted. Use numeric suffixes
to create unique file names.

Generated Files and Locations
The types and locations of generated files depend on the target that you
specify. For all targets, if errors or warnings occur during build or if you
explicitly request a report, MATLAB Coder generates reports.

19-122

How MATLAB® Coder™ Partitions Generated Code

Each time MATLAB Coder generates the same type of output for the same
code or project, it removes the files from the previous build. If you want to
preserve files from a build, copy them to a different location before starting
another build.

Generated Files for MEX Targets
By default, MATLAB Coder generates the following files for MEX function
(mex) targets.

Type of Files Location

Platform-specific MEX files Current folder

MEX, and C/C++ source,
header, and object files

codegen/mex/function_name

HTML reports codegen/mex/function_name/html

Generated Files for C/C++ Static Library Targets
By default, MATLAB Coder generates the following files for C/C++ static
library targets.

Type of Files Location

C/C++ source, library, header,
and object files

codegen/lib/function_name

HTML reports codegen/lib/function_name/html

Generated Files for C/C++ Dynamic Library Targets
By default, MATLAB Coder generates the following files for C/C++ dynamic
library targets.

Type of Files Location

C/C++ source, library, header,
and object files

codegen/dll/function_name

HTML reports codegen/dll/function_name/html

19-123

19 Generating C/C++ Code from MATLAB® Code

Generated Files for C/C++ Executable Targets
By default, MATLAB Coder generates the following files for C/C++ executable
targets.

Type of Files Location

C/C++ source, header, and
object files

codegen/exe/function_name

HTML reports codegen/exe/function_name/html

Changing Names and Locations of Generated Files

In the Project Settings Dialog Box.

To change the... Do this...

Output file name On the Build tab, enter the name in the Output file
field.

Output file location On the Build tab:

1 Click the More settings link.

2 In the Project Settings dialog box, click the Paths
tab.

3 On this tab, set Build folder to Specified
folder.

The Build folder name field appears.

4 For this field, either browse to the output file
location or enter the full path. The path must not
contain spaces.

19-124

How MATLAB® Coder™ Partitions Generated Code

To change the... Do this...

Note The output file location should not contain:

• Spaces, as this can lead to code generation failures
in certain operating system configurations.

• Non 7-bit ASCII characters, such as Japanese
characters.

At the Command Line. You can change the name and location of generated
files by using the codegen options -o and -d.

File Partitioning and Inlining
How MATLAB Coder partitions generated C/C++ code depends on whether
you choose to generate one C/C++ file for each MATLAB file and whether
you inline your MATLAB functions.

If you... MATLAB Coder...

Generate all C/C++
functions into a single
file and disable inlining

Generates a single C/C++ file without inlining
functions.

Generate all C/C++
functions into a single
file and enable inlining

Generates a single C/C++ file. Inlines functions
whose sizes fall within the inlining threshold.

19-125

19 Generating C/C++ Code from MATLAB® Code

If you... MATLAB Coder...

Generate one C/C++
file for each MATLAB
file and disable inlining

Partitions generated C/C++ code to match
MATLAB file structure. See “Partitioning
Generated Files with One C/C++ File Per
MATLAB File” on page 19-117.

Generate one C/C++
file for each MATLAB
file and enable inlining

Places inlined functions in the same C/C++ file
as the function into which they are inlined. Even
when you enable inlining, MATLAB Coder inlines
only those functions whose sizes fall within the
inlining threshold. For MATLAB functions that
are not inlined, MATLAB Coder partitions the
generated C/C++ code, as described.

19-126

How MATLAB® Coder™ Partitions Generated Code

Tradeoffs Between File Partitioning and Inlining
Weighing file partitioning against inlining represents a trade-off between
readability, efficiency, and ease of integrating your MATLAB code with
existing embedded software.

If You
Generate...

Generated
C/C++ Code

Advantages Disadvantages

All C/C++
functions into
a single file

Does not match
MATLAB file
structure

Easier to
integrate
with existing
embedded
software

Difficult to
map C/C++
code to original
MATLAB file

One C/C++-file
for each
MATLAB file
and enable
inlining

Does not exactly
match MATLAB
file structure

Program
executes faster

Difficult to
map C/C++
code to original
MATLAB file

One C/C++-file
for each
MATLAB file
and disable
inlining

Matches
MATLAB file
structure

Easy to map
C/C++ code
to original
MATLAB file

Program runs
less efficiently

How Disabling Inlining Affects File Partitioning
Inlining is enabled by default. Therefore, to generate one C/C++ file for each
top-level MATLAB function, you must:

• Select to generate one C/C++ file for each top-level MATLAB function.
For more information, see “How to Select the File Partitioning Method”
on page 19-116.

• Explicitly disable inlining, either globally or for individual MATLAB
functions.

How to Disable Inlining Globally in the Project Settings Dialog Box.

1 In the MATLAB Coder project, click the Build tab.

19-127

19 Generating C/C++ Code from MATLAB® Code

2 On this tab, click the More settings link to view the project settings for
the selected output type.

3 In the Project Settings dialog box, click the All Settings tab.

4 On this tab, under Function Inlining set the Inlining threshold to
zero. Close the dialog box.

How to Disable Inlining Globally at the Command Line. To disable
inlining of functions, use the -O disable:inline option with codegen. For
example, to disable inlining and generate a MEX function for a function foo
that has no inputs:

codegen -O disable:inline foo

For more information, see the description of codegen.

How to Disable Inlining for Individual Functions. To disable inlining for
an individual MATLAB function, add the directive coder.inline('never');
on a separate line in the source MATLAB file, after the function signature.

function y = foo(u,v) %#codegen
coder.inline('never');
s = single(u);
d = double(v);
y = double(identity(s)) + identity(d);

codegen does not inline entry-point functions.

The coder.inline directive applies only to the function in which it appears.
In this example, inlining is disabled for function foo, but not for identity, a
top-level function defined in a separate MATLAB file and called by foo. To
disable inlining for identity, add this directive after its function signature in
the source file identity.m. For more information, see coder.inline.

For a more efficient way to disable inlining for both functions, see “How to
Disable Inlining Globally at the Command Line” on page 19-128.

19-128

How MATLAB® Coder™ Partitions Generated Code

Correlating C/C++ Code with Inlined Functions
To correlate the C/C++ code that you generate with the original inlined
functions, add comments in the MATLAB code to identify the function. These
comments will appear in the C/C++ code and help you map the generated code
back to the original MATLAB functions.

Modifying the Inlining Threshold
To change inlining behavior, adjust the inlining threshold parameter.

Modifying the Inlining Threshold in the Project Settings Dialog Box.
On the Project Settings dialog box All Settings tab, under Function
Inlining, set the value of the Inline threshold parameter.

Modifying the Inlining Threshold at the Command Line. Set the
value of the InlineThreshold parameter of the configuration object. See
coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig.

19-129

19 Generating C/C++ Code from MATLAB® Code

Customize the Post-Code-Generation Build Process
For certain applications, you might want to control aspects of the build
process that occur after code generation but before compilation. For example,
you might want to specify compiler or linker options. You can customize build
processing that occurs after code generation using MATLAB Coder for MEX
functions, C/C++ libraries and C/C++ executables.

You can customize your build using:

• The coder.updateBuildInfo function in your MATLAB code

• A post-code-generation command

In this section...

“Customize Build Using coder.updateBuildInfo” on page 19-130

“Customize Build Using Post-Code-Generation Command” on page 19-131

“Build Information Object” on page 19-131

“Build Information Methods” on page 19-131

“Write Post-Code-Generation Command” on page 19-168

“Use Post-Code-Generation Command to Customize Build” on page 19-169

“Write and Use Post-Code-Generation Command at the Command Line”
on page 19-170

Customize Build Using coder.updateBuildInfo
To customize the post-code-generation build from your MATLAB code:

1 In your MATLAB code, call coder.updateBuildInfo to update the build
information object. You specify a build information object method and the
input arguments for the method. See coder.updateBuildInfo and “Build
Information Methods” on page 19-131.

2 Generate code from your MATLAB code using the codegen command or
from the project interface.

19-130

Customize the Post-Code-Generation Build Process

Customize Build Using Post-Code-Generation
Command
To customize your build using the post-code-generation command:

1 “Write Post-Code-Generation Command” on page 19-168. Typically, you
use this command to get the project name and build information or to add
data to the build information object.

2 “Use Post-Code-Generation Command to Customize Build” on page 19-169.

Build Information Object
At the start of a build, the MATLAB Coder build process logs the following
project, build option, and dependency information to a build information
object, RTW.BuildInfo:

• Compiler options

• Preprocessor identifier definitions

• Linker options

• Source files and paths

• Include files and paths

• Precompiled external libraries

Use the “Build Information Methods” on page 19-131 to access this
information in the build information object. “Write Post-Code-Generation
Command” on page 19-168 explains how to use the functions to control a
post-code-generation build.

When code generation is complete, MATLAB Coder creates a buildInfo.mat
file in the build folder.

Build Information Methods
Use these methods to access or write data to the build information object.
The syntax is:

buildInfo.method_name(input_arg1, ..., input_argn)

19-131

19 Generating C/C++ Code from MATLAB® Code

addCompileFlags

• Purpose: Add compiler options to build information.

• Syntax: addCompileFlags(buildinfo, options, groups)

groups is optional.

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

options

A character array or cell array of character arrays that specifies the
compiler options to be added to the build information. The function
adds each option to the end of a compiler option vector. If you specify
multiple options within a single character array, for example '-Zi
-Wall', the function adds the string to the vector as a single element.
For example, if you add '-Zi -Wall' and then '-O3', the vector
consists of two elements, as shown below.

'-Zi -Wall' '-O3'

groups (optional)

A character array or cell array of character arrays that groups
specified compiler options. You can use groups to

• Document the use of specific compiler options

• Retrieve or apply collections of compiler options

You can apply

• A single group name to one or more compiler options

• Multiple group names to collections of compiler options (available
for nonmakefile build environments only)

19-132

Customize the Post-Code-Generation Build Process

To... Specify groups as a...

Apply one group name
to compiler options

Character array.

Apply different group
names to compiler
options

Cell array of character arrays such that
the number of group names matches
the number of elements you specify for
options.

• Description:

The addCompileFlags function adds specified compiler options to the
project’s build information. MATLAB Coder stores the compiler options in
a vector. The function adds options to the end of the vector based on the
order in which you specify them.

In addition to the required buildinfo and options arguments, you can use
an optional groups argument to group your options.

addDefines

• Purpose: Add preprocessor macro definitions to build information.

• Syntax: addDefines(buildinfo, macrodefs, groups)

groups is optional.

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

macrodefs

A character array or cell array of character arrays that specifies
the preprocessor macro definitions to be added to the object. The
function adds each definition to the end of a compiler option vector. If
you specify multiple definitions within a single character array, for
example '-DRT -DDEBUG', the function adds the string to the vector
as a single element. For example, if you add '-DPROTO -DDEBUG' and
then '-DPRODUCTION', the vector consists of two elements, as shown
below.

19-133

19 Generating C/C++ Code from MATLAB® Code

'-DPROTO -DDEBUG' '-DPRODUCTION'

groups (optional)

A character array or cell array of character arrays that groups
specified definitions. You can use groups to

• Document the use of specific macro definitions

• Retrieve or apply groups of macro definitions

You can apply

• A single group name to one or more macro definitions

• Multiple group names to collections of macro definitions (available
for nonmakefile build environments only)

To... Specify groups as a...

Apply one group name
to macro definitions

Character array.

Apply different group
names to macro
definitions

Cell array of character arrays such that
the number of group names matches
the number elements you specify for
macrodefs.

• Description:

The addDefines function adds specified preprocessor macro definitions
to the project’s build information. The MATLAB Coder software stores
the definitions in a vector. The function adds definitions to the end of the
vector based on the order in which you specify them.

In addition to the required buildinfo and macrodefs arguments, you can
use an optional groups argument to group your options.

addIncludeFiles

• Purpose: Add include files to build information.

• Syntax: addIncludeFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

19-134

Customize the Post-Code-Generation Build Process

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

filenames

A character array or cell array of character arrays that specifies
names of include files to be added to the build information.

The filename strings can include wildcard characters, provided that
the dot delimiter (.) is present. Examples are '*.*', '*.h', and
'*.h*'.

The function adds the filenames to the end of a vector in the order
that you specify them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)

A character array or cell array of character arrays that specifies
paths to the include files. The function adds the paths to the end of a
vector in the order that you specify them. If you specify a single path
as a character array, the function uses that path for all files.

groups (optional)

A character array or cell array of character arrays that groups
specified include files. You can use groups to

• Document the use of specific include files

• Retrieve or apply groups of include files

You can apply

• A single group name to an include file

19-135

19 Generating C/C++ Code from MATLAB® Code

• A single group name to multiple include files

• Multiple group names to collections of multiple include files

To... Specify groups as a...

Apply one group name
to include files

Character array.

Apply different group
names to include files

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for filenames.

• Description:

The addIncludeFiles function adds specified include files to the project’s
build information. The MATLAB Coder software stores the include files in
a vector. The function adds the filenames to the end of the vector in the
order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify each
optional argument as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to the include files it adds to the
build information

Cell array of character arrays Pairs each character array with a specified include file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('')
for paths.

addIncludePaths

• Purpose: Add include paths to build information.

• Syntax: addIncludePaths(buildinfo, paths, groups)

19-136

Customize the Post-Code-Generation Build Process

groups is optional.

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

paths

A character array or cell array of character arrays that specifies
include file paths to be added to the build information. The function
adds the paths to the end of a vector in the order that you specify
them.

The function removes duplicate include file entries that

• You specify as input

• Already exist in the include path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

groups (optional)

A character array or cell array of character arrays that groups
specified include paths. You can use groups to

• Document the use of specific include paths

• Retrieve or apply groups of include paths

You can apply

• A single group name to an include path

• A single group name to multiple include paths

• Multiple group names to collections of multiple include paths

19-137

19 Generating C/C++ Code from MATLAB® Code

To... Specify groups as a...

Apply one group name
to include paths

Character array.

Apply different group
names to include
paths

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for paths.

• Description:

The addIncludePaths function adds specified include paths to the project’s
build information. The MATLAB Coder software stores the include paths
in a vector. The function adds the paths to the end of the vector in the
order that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument. You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to the
include paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified include path. Thus, the length
of the cell array must match the length
of the cell array you specify for paths.

addLinkFlags

• Purpose: Add link options to build information.

• Syntax: addLinkFlags(buildinfo, options, groups)

groups is optional.

• Arguments:

19-138

Customize the Post-Code-Generation Build Process

buildinfo

Build information stored in RTW.BuildInfo.

options

A character array or cell array of character arrays that specifies the
linker options to be added to the build information. The function
adds each option to the end of a linker option vector. If you specify
multiple options within a single character array, for example '-MD
-Gy', the function adds the string to the vector as a single element.
For example, if you add '-MD -Gy' and then '-T', the vector consists
of two elements, as shown below.

'-MD -Gy' '-T'

groups (optional)

A character array or cell array of character arrays that groups
specified linker options. You can use groups to

• Document the use of specific linker options

• Retrieve or apply groups of linker options

You can apply

• A single group name to one or more linker options

• Multiple group names to collections of linker options (available for
nonmakefile build environments only)

To... Specify groups as a...

Apply one group name
to linker options

Character array.

Apply different group
names to linker
options

Cell array of character arrays such that
the number of group names matches
the number of elements you specify for
options.

• Description:

The addLinkFlags function adds specified linker options to the project’s
build information. The MATLAB Coder software stores the linker options

19-139

19 Generating C/C++ Code from MATLAB® Code

in a vector. The function adds options to the end of the vector based on
the order in which you specify them.

In addition to the required buildinfo and options arguments, you can use
an optional groups argument to group your options.

addLinkObjects

• Purpose: Add link objects to build information.

• Syntax: addLinkObjects(buildinfo, linkobjs, paths, priority,
precompiled, linkonly, groups)

The arguments except buildinfo , linkobjs, and paths are optional. If
you specify an optional argument, you must specify the optional arguments
preceding it.

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

linkobjs

A character array or cell array of character arrays that specifies the
filenames of linkable objects to be added to the build information.
The function adds the filenames that you specify in the function call
to a vector that stores the object filenames in priority order. If you
specify multiple objects that have the same priority (see priority
below), the function adds them to the vector based on the order in
which you specify the object filenames in the cell array.

The function removes duplicate link objects that

• You specify as input

• Already exist in the linkable object filename vector

• Have a path that matches the path of a matching linkable object
filename

A duplicate entry consists of an exact match of a path string and
corresponding linkable object filename.

19-140

Customize the Post-Code-Generation Build Process

paths

A character array or cell array of character arrays that specifies
paths to the linkable objects. If you specify a character array, the
path string applies to all linkable objects.

priority (optional)

A numeric value or vector of numeric values that indicates the
relative priority of each specified link object. Lower values have
higher priority. The default priority is 1000.

precompiled (optional)

The logical value true or false or a vector of logical values that
indicates whether each specified link object is precompiled.

Specify true if the link object has been prebuilt for faster compiling
and linking and exists in a specified location.

If precompiled is false (the default), the MATLAB Coder build
process creates the link object in the build folder.

This argument is ignored if linkonly equals true.

linkonly (optional)

The logical value true or false or a vector of logical values that
indicates whether each specified link object is to be used only for
linking.

Specify true if the MATLAB Coder build process should not build,
nor generate rules in the makefile for building, the specified link
object, but should include it when linking the final executable. For
example, you can use this to incorporate link objects for which source
files are not available. If linkonly is true, the value of precompiled
is ignored.

If linkonly is false (the default), rules for building the link objects
are added to the makefile. In this case, the value of precompiled
determines which subsection of the added rules is expanded,
START_PRECOMP_LIBRARIES (true) or START_EXPAND_LIBRARIES
(false).

19-141

19 Generating C/C++ Code from MATLAB® Code

groups (optional)

A character array or cell array of character arrays that groups
specified link objects. You can use groups to

• Document the use of specific link objects

• Retrieve or apply groups of link objects

You can apply

• A single group name to a linkable object

• A single group name to multiple linkable objects

• Multiple group name to collections of multiple linkable objects

To... Specify groups as a...

Apply one group name
to link objects

Character array.

Apply different group
names to link objects

Cell array of character arrays such that
the number of group names matches the
number elements you specify for linkobjs.

The default value of groups is {''}.

• Description:

The addLinkObjects function adds specified link objects to the project’s
build information. The MATLAB Coder software stores the link objects in a
vector in relative priority order. If multiple objects have the same priority
or you do not specify priorities, the function adds the objects to the vector
based on the order in which you specify them.

In addition to the required buildinfo, linkobjs, and paths arguments,
you can specify the optional arguments priority, precompiled, linkonly,
and groups. You can specify paths and groups as a character array or a
cell array of character arrays.

19-142

Customize the Post-Code-Generation Build Process

If You Specify paths or
groups as a...

The Function...

Character array Applies the character array to the
objects it adds to the build information.

Cell array of character arrays Pairs each character array with a
specified object. Thus, the length of the
cell array must match the length of the
cell array you specify for linkobjs.

Similarly, you can specify priority, precompiled, and linkonly as a
value or vector of values.

If You Specify priority,
precompiled, or linkonly as
a...

The Function...

Value Applies the value to the objects it adds
to the build information.

Vector of values Pairs each value with a specified object.
Thus, the length of the vector must
match the length of the cell array you
specify for linkobjs.

If you choose to specify an optional argument, you must specify the
optional arguments preceding it. For example, to specify that objects
are precompiled using the precompiled argument, you must specify the
priority argument that precedes precompiled. You could pass the default
priority value 1000, as shown below.

addLinkObjects(myBuildInfo, 'test1', '/proj/lib/lib1', 1000, true);

addNonBuildFiles

• Purpose: Add nonbuild-related files to build information.

• Syntax: addNonBuildFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

• Arguments:

19-143

19 Generating C/C++ Code from MATLAB® Code

buildinfo

Build information stored in RTW.BuildInfo.

filenames

A character array or cell array of character arrays that specifies
names of nonbuild-related files to be added to the build information.

The filename strings can include wildcard characters, provided that
the dot delimiter (.) is present. Examples are '*.*', '*.DLL', and
'*.D*'.

The function adds the filenames to the end of a vector in the order
that you specify them.

The function removes duplicate nonbuild file entries that

• Already exist in the nonbuild file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)

A character array or cell array of character arrays that specifies
paths to the nonbuild files. The function adds the paths to the end
of a vector in the order that you specify them. If you specify a single
path as a character array, the function uses that path for all files.

groups (optional)

A character array or cell array of character arrays that groups
specified nonbuild files. You can use groups to

• Document the use of specific nonbuild files

• Retrieve or apply groups of nonbuild files

You can apply

• A single group name to a nonbuild file

• A single group name to multiple nonbuild files

• Multiple group names to collections of multiple nonbuild files

19-144

Customize the Post-Code-Generation Build Process

To... Specify groups as a...

Apply one group name
to nonbuild files

Character array.

Apply different group
names to nonbuild files

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for filenames.

• Description:

The addNonBuildFiles function adds specified nonbuild-related files,
such as DLL files required for a final executable, or a README file, to
the project’s build information. The MATLAB Coder software stores the
nonbuild files in a vector. The function adds the filenames to the end of the
vector in the order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify each
optional argument as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to the nonbuild files it adds to
the build information.

Cell array of character arrays Pairs each character array with a specified nonbuild file.
Thus, the length of the cell array must match the length of
the cell array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('')
for paths.

addSourceFiles

• Purpose: Add source files to build information.

• Syntax: addSourceFiles(buildinfo, filenames, paths, groups)

paths and groups are optional.

• Arguments:

19-145

19 Generating C/C++ Code from MATLAB® Code

buildinfo

Build information stored in RTW.BuildInfo.

filenames

A character array or cell array of character arrays that specifies
names of the source files to be added to the build information.

The filename strings can include wildcard characters, provided that
the dot delimiter (.) is present. Examples are '*.*', '*.c', and
'*.c*'.

The function adds the filenames to the end of a vector in the order
that you specify them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source file vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

paths (optional)

A character array or cell array of character arrays that specifies
paths to the source files. The function adds the paths to the end of a
vector in the order that you specify them. If you specify a single path
as a character array, the function uses that path for all files.

groups (optional)

A character array or cell array of character arrays that groups
specified source files. You can use groups to

• Document the use of specific source files

• Retrieve or apply groups of source files

You can apply

• A single group name to a source file

• A single group name to multiple source files

• Multiple group names to collections of multiple source files

19-146

Customize the Post-Code-Generation Build Process

To... Specify group as a...

Apply one group name to
source files

Character array.

Apply different group
names to source files

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for filenames.

• Description:

The addSourceFiles function adds specified source files to the project’s
build information. The MATLAB Coder software stores the source files in
a vector. The function adds the filenames to the end of the vector in the
order that you specify them.

In addition to the required buildinfo and filenames arguments, you
can specify optional paths and groups arguments. You can specify each
optional argument as a character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to the source files it adds to the
build information.

Cell array of character arrays Pairs each character array with a specified source file. Thus,
the length of the cell array must match the length of the cell
array you specify for filenames.

If you choose to specify groups, but omit paths, specify a null string ('')
for paths.

addSourcePaths

• Purpose: Add source paths to build information.

• Syntax: addSourcePaths(buildinfo, paths, groups)

groups is optional.

• Arguments:

19-147

19 Generating C/C++ Code from MATLAB® Code

buildinfo

Build information stored in RTW.BuildInfo.

paths

A character array or cell array of character arrays that specifies
source file paths to be added to the build information. The function
adds the paths to the end of a vector in the order that you specify
them.

The function removes duplicate source file entries that

• You specify as input

• Already exist in the source path vector

• Have a path that matches the path of a matching filename

A duplicate entry consists of an exact match of a path string and
corresponding filename.

Note The MATLAB Coder software does not check whether a
specified path string is valid.

groups (optional)

A character array or cell array of character arrays that groups
specified source paths. You can use groups to

• Document the use of specific source paths

• Retrieve or apply groups of source paths

19-148

Customize the Post-Code-Generation Build Process

You can apply

• A single group name to a source path

• A single group name to multiple source paths

• Multiple group names to collections of multiple source paths

To... Specify groups as a...

Apply one group name
to source paths

Character array.

Apply different group
names to source paths

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for paths.

• Description:

The addSourcePaths function adds specified source paths to the project’s
build information. The MATLAB Coder software stores the source paths
in a vector. The function adds the paths to the end of the vector in the
order that you specify them.

In addition to the required buildinfo and paths arguments, you can
specify an optional groups argument . You can specify groups as a
character array or a cell array of character arrays.

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to the
source paths it adds to the build
information.

Cell array of character arrays Pairs each character array with a
specified source path. Thus, the length
of the character array or cell array must
match the length of the cell array you
specify for paths.

19-149

19 Generating C/C++ Code from MATLAB® Code

Note The MATLAB Coder software does not check whether a specified
path string is valid.

addTMFTokens

• Purpose: Add template makefile (TMF) tokens that provide build-time
information for makefile generation.

• Syntax: addTMFTokens(buildinfo, tokennames, tokenvalues,
groups)

groups is optional.

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

tokennames

A character array or cell array of character arrays that specifies
names of TMF tokens (for example, '|>CUSTOM_OUTNAME<|') to be
added to the build information. The function adds the token names to
the end of a vector in the order that you specify them.

If you specify a token name that already exists in the vector, the first
instance takes precedence and its value used for replacement.

tokenvalues

A character array or cell array of character arrays that specifies TMF
token values corresponding to the previously-specified TMF token
names. The function adds the token values to the end of a vector in
the order that you specify them.

groups (optional)

A character array or cell array of character arrays that groups
specified TMF tokens. You can use groups to

• Document the use of specific TMF tokens

• Retrieve or apply groups of TMF tokens

19-150

Customize the Post-Code-Generation Build Process

You can apply

• A single group name to a TMF token

• A single group name to multiple TMF tokens

• Multiple group names to collections of multiple TMF tokens

To... Specify groups as a...

Apply one group name
to TMF tokens

Character array.

Apply different group
names to TMF tokens

Cell array of character arrays such that
the number of group names that you
specify matches the number of elements
you specify for tokennames.

• Description:

Call the addTMFTokens function inside a post code generation command
to provide build-time information to help customize makefile generation.
The tokens specified in the addTMFTokens function call must be handled
appropriately in the template makefile (TMF) for the target selected for
your project. For example, if your post code generation command calls
addTMFTokens to add a TMF token named |>CUSTOM_OUTNAME<| that
specifies an output file name for the build, the TMF must act on the value
of |>CUSTOM_OUTNAME<| to achieve the desired result.

The addTMFTokens function adds specified TMF token names and values to
the project’s build information. The MATLAB Coder software stores the
TMF tokens in a vector. The function adds the tokens to the end of the
vector in the order that you specify them.

In addition to the required buildinfo, tokennames, and tokenvalues
arguments, you can specify an optional groups argument. You can specify
groups as a character array or a cell array of character arrays.

19-151

19 Generating C/C++ Code from MATLAB® Code

If You Specify an Optional
Argument as a...

The Function...

Character array Applies the character array to the TMF tokens it adds to
the build information.

Cell array of character arrays Pairs each character array with a specified TMF token.
Thus, the length of the cell array must match the length of
the cell array you specify for tokennames.

findIncludeFiles

• Purpose: Find and add include (header) files to build information.

• Syntax: findIncludeFiles(buildinfo, extPatterns)

extPatterns is optional.

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

extPatterns (optional)

A cell array of character arrays that specify patterns of file name
extensions for which the function is to search. Each pattern

• Must start with *.

• Can include a combination of alphanumeric and underscore (_)
characters

The default pattern is *.h.

Examples of valid patterns include

*.h
*.hpp
.x

• Description:

The findIncludeFiles function

19-152

Customize the Post-Code-Generation Build Process

- Searches for include files, based on specified file name extension
patterns, in the source and include paths recorded in a project’s build
information object

- Adds the files found, along with their full paths, to the build information
object

- Deletes duplicate entries

getCompileFlags

• Purpose: Get compiler options from build information.

• Syntax: options = getCompileFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.

includeGroups (optional)

A character array or cell array of character arrays that specifies
groups of compiler flags you want the function to return.

excludeGroups (optional)

A character array or cell array of character arrays that specifies
groups of compiler flags you do not want the function to return.

• Output arguments:

Compiler options stored in the project’s build information.

• Description:

The getCompileFlags function returns compiler options stored in
the project’s build information. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
options the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

19-153

19 Generating C/C++ Code from MATLAB® Code

getDefines

• Purpose: Get preprocessor macro definitions from build information.

• Syntax: [macrodefs, identifiers, values] =
getDefines(buildinfo, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.

includeGroups (optional)

A character array or cell array of character arrays that specifies
groups of macro definitions you want the function to return.

excludeGroups (optional)

A character array or cell array of character arrays that specifies
groups of macro definitions you do not want the function to return.

• Output arguments:

Preprocessor macro definitions stored in the project’s build information.
The function returns the macro definitions in three vectors.

Vector Description

macrodefs Complete macro definitions with -D prefix

identifiers Names of the macros

values Values assigned to the macros (anything
specified to the right of the first equals
sign) ; the default is an empty string ('')

• Description:

The getDefines function returns preprocessor macro definitions stored in
the project’s build information. When the function returns a definition,
it automatically

19-154

Customize the Post-Code-Generation Build Process

- Prepends a -D to the definition if the -D was not specified when the
definition was added to the build information

- Changes a lowercase -d to -D

Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of definitions the function is to return.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getFullFileList

• Purpose: Get All files from project’s build information.

• Syntax: [fPathNames, names] = getFullFileList(buildinfo, fcase)

fcase is optional.

• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.

fcase (optional)

The string 'source', 'include', or 'nonbuild'. If the argument is
omitted, the function returns all the files from the build information
object.

If You Specify... The Function...

'source' Returns source files from the build
information object.

'include' Returns include files from the build
information object.

'nonbuild' Returns nonbuild files from the build
information object.

• Output arguments:

Fully-qualified file paths and file names for files stored in the project’s
build information.

19-155

19 Generating C/C++ Code from MATLAB® Code

Note Usually it is unnecessary to resolve the path of every file in the
project build information, because the makefile for the project build
will resolve file locations based on source paths and rules. Therefore,
getFullFileList returns the path for each file only if a path was
explicitly associated with the file when it was added, or if you called
updateFilePathsAndExtensions to resolve file paths and extensions
before calling getFullFileList.

• Description:

The getFullFileList function returns the fully-qualified paths and names
of all files, or files of a selected type (source, include, or nonbuild), stored
in the project’s build information.

getIncludeFiles

• Purpose: Get include files from build information.

• Syntax: files = getIncludeFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.

concatenatePaths

The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

replaceMatlabroot

The logical value true or false.

19-156

Customize the Post-Code-Generation Build Process

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)

A character array or cell array of character arrays that specifies
groups of include files you want the function to return.

excludeGroups (optional)

A character array or cell array of character arrays that specifies
groups of include files you do not want the function to return.

• Output arguments:

Names of include files stored in the project’s build information.

• Description:

The getIncludeFiles function returns the names of include files
stored in the project’s build information. Use the concatenatePaths
and replaceMatlabroot arguments to control whether the function
includes paths and your MATLAB root definition in the output it returns.
Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of include files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getIncludePaths

• Purpose: Get include paths from build information.

• Syntax: files=getIncludePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

• Input arguments:

19-157

19 Generating C/C++ Code from MATLAB® Code

buildinfo

Build information stored in RTW.BuildInfo.

replaceMatlabroot

The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token
$(MATLAB_ROOT).

includeGroups (optional)

A character array or cell array of character arrays that specifies
groups of include paths you want the function to return.

excludeGroups (optional)

A character array or cell array of character arrays that specifies
groups of include paths you do not want the function to return.

• Output arguments:

Paths of include files stored in the build information object.

• Description:

The getIncludePaths function returns the names of include file paths
stored in the project’s build information. Use the replaceMatlabroot
argument to control whether the function includes your MATLAB root
definition in the output it returns. Using optional includeGroups and
excludeGroups arguments, you can selectively include or exclude groups of
include file paths the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getLinkFlags

• Purpose: Get link options from build information.

19-158

Customize the Post-Code-Generation Build Process

• Syntax: options=getLinkFlags(buildinfo, includeGroups,
excludeGroups)

includeGroups and excludeGroups are optional.

• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.

includeGroups (optional)

A character array or cell array that specifies groups of linker flags
you want the function to return.

excludeGroups (optional)

A character array or cell array that specifies groups of linker flags you
do not want the function to return. To exclude groups and not include
specific groups, specify an empty cell array ('') for includeGroups.

• Output arguments:

Linker options stored in the project’s build information.

• Description:

The getLinkFlags function returns linker options stored in the project’s
build information. Using optional includeGroups and excludeGroups
arguments, you can selectively include or exclude groups of options the
function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getNonBuildFiles

• Purpose: Get nonbuild-related files from build information.

• Syntax: files=getNonBuildFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

• Input arguments:

19-159

19 Generating C/C++ Code from MATLAB® Code

buildinfo

Build information stored in RTW.BuildInfo.

concatenatePaths

The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

replaceMatlabroot

The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)

A character array or cell array of character arrays that specifies
groups of nonbuild files you want the function to return.

excludeGroups (optional)

A character array or cell array of character arrays that specifies
groups of nonbuild files you do not want the function to return.

• Output arguments:

Names of nonbuild files stored in the project’s build information.

• Description:

The getNonBuildFiles function returns the names of nonbuild-related
files, such as DLL files required for a final executable, or a README
file, stored in the project’s build information. Use the concatenatePaths
and replaceMatlabroot arguments to control whether the function

19-160

Customize the Post-Code-Generation Build Process

includes paths and your MATLAB root definition in the output it returns.
Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of nonbuild files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getSourceFiles

• Purpose: Get source files from project’s build information.

• Syntax: srcfiles=getSourceFiles(buildinfo, concatenatePaths,
replaceMatlabroot, includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.

concatenatePaths

The logical value true or false.

If You Specify... The Function...

true Concatenates and returns each filename
with its corresponding path.

false Returns only filenames.

Note Usually it is unnecessary to resolve the path of every file in
the project build information, because the makefile for the project
build will resolve file locations based on source paths and rules.
Therefore, specifying true for concatenatePaths returns the path for
each file only if a path was explicitly associated with the file when
it was added, or if you called updateFilePathsAndExtensions to
resolve file paths and extensions before calling getSourceFiles.

19-161

19 Generating C/C++ Code from MATLAB® Code

replaceMatlabroot

The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)

A character array or cell array of character arrays that specifies
groups of source files you want the function to return.

excludeGroups (optional)

A character array or cell array of character arrays that specifies
groups of source files you do not want the function to return.

• Output arguments:

Names of source files stored in the project’s build information.

• Description:

The getSourceFiles function returns the names of source files stored
in the project’s build information. Use the concatenatePaths and
replaceMatlabroot arguments to control whether the function includes
paths and your MATLAB root definition in the output it returns.
Using optional includeGroups and excludeGroups arguments, you can
selectively include or exclude groups of source files the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

getSourcePaths

• Purpose: Get source paths from build information.

• Syntax: files=getSourcePaths(buildinfo, replaceMatlabroot,
includeGroups, excludeGroups)

includeGroups and excludeGroups are optional.

19-162

Customize the Post-Code-Generation Build Process

• Input arguments:

buildinfo

Build information stored in RTW.BuildInfo.

replaceMatlabroot

The logical value true or false.

If You Specify... The Function...

true Replaces the token $(MATLAB_ROOT) with
the absolute path string for your MATLAB
installation folder.

false Does not replace the token $(MATLAB_ROOT).

includeGroups (optional)

A character array or cell array of character arrays that specifies
groups of source paths you want the function to return.

excludeGroups (optional)

A character array or cell array of character arrays that specifies
groups of source paths you do not want the function to return.

• Output arguments:

Paths of source files stored in the project’s build information.

• Description:

The getSourcePaths function returns the names of source file paths stored
in the project build information. Use the replaceMatlabroot argument
to control whether the function includes your MATLAB root definition in
the output it returns. Using optional includeGroups and excludeGroups
arguments, you can selectively include or exclude groups of source file
paths that the function returns.

If you choose to specify excludeGroups and omit includeGroups, specify a
null string ('') for includeGroups.

19-163

19 Generating C/C++ Code from MATLAB® Code

packNGo

• Purpose: Package generated code in zip file for relocation.

• Syntax: packNGo(buildinfo, propVals...)

propVals is optional.

• Arguments:

buildinfo

Build information loaded from the build folder.

propVals (optional)

A cell array of property-value pairs that specify packaging details.

To... Specify Property... With Value...

Package all generated code files in a zip
file as a single, flat folder

'packType' 'flat' (default)

Package generated code files
hierarchically in a primary zip file
that contains three secondary zip files:
• mlrFiles.zip — files in your

matlabroot folder tree

• sDirFiles.zip — files in and under
your build folder

• otherFiles.zip — required files not
in the matlabroot or start folder trees

'packType' 'hierarchical'
Paths for files in the
secondary zip files are
relative to the root folder
of the primary zip file.

Specify a file name for the primary zip file 'fileName' 'string'
Default:'untitled.zip'
If you omit the .zip file
extension, the function
adds it.

Include only the minimal header files
required to build the code in the zip file

'minimalHeaders' true (default)

Include all header files found on the
include path in the zip file

'minimalHeaders' false

19-164

Customize the Post-Code-Generation Build Process

• Description:

The packNGo function packages the following code files in a compressed zip
file so you can relocate, unpack, and rebuild them in another development
environment.

- Source files (for example, .c and .cpp files)

- Header files (for example, .h and .hpp files)

- Nonbuild-related files (for example, .dll files required for a final
executable file and .txt informational files)

- MAT-file that contains the build information object (.mat file)

Use this function to relocate files so that they can be recompiled for a
specific target environment, or rebuilt in a development environment in
which MATLAB is not installed.

By default, the packNGo function creates a zip file, foo.zip, in the current
working folder.

By default, the function packages the files as a flat folder structure in a
zip file. You can customize the output by specifying property name and
value pairs as previously described.

After relocating the zip file, use a standard zip utility to unpack the
compressed file.

• Limitations:

The following limitations apply to use of the packNGo function:

- The function operates on source files only, such as *.c, *.cpp, and *.h
files. The function does not support compile flags, defines, or makefiles.

- Unnecessary files might be included. The function might find additional
files from source paths and include paths recorded in the build
information, even if they are not used.

- packNGo does not package the code generated for MEX targets.

• See Also:

- “Package Generated Code at the Command Line” on page 19-195

- “Package Code For Use in Other Development Environments” on page
19-193

19-165

19 Generating C/C++ Code from MATLAB® Code

updateFilePathsAndExtensions

• Purpose: Update files in project build information with missing paths and
file extensions.

• Syntax: updateFilePathsAndExtensions(buildinfo, extensions)

extensions is optional.

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

extensions (optional)

A cell array of character arrays that specifies the extensions (file
types) of files for which to search and include in the update processing.
By default, the function searches for files with a .c extension. The
function checks files and updates paths and extensions based on the
order in which you list the extensions in the cell array. For example,
if you specify {'.c' '.cpp'}, and a folder contains myfile.c and
myfile.cpp, an instance of myfile is updated to myfile.c.

• Description:

Using paths that already exist in a project’s build information, the
updateFilePathsAndExtensions function checks whether file references
in the build information need to be updated with a path or file extension.
This function can be particularly useful for

- Maintaining build information for a toolchain that requires the use of
file extensions

- Updating multiple customized instances of build information for a given
project

updateFilePathsAndExtensions

• Purpose: Update files in project build information with missing paths and
file extensions

• Syntax: updateFilePathsAndExtensions(buildinfo, extensions)

19-166

Customize the Post-Code-Generation Build Process

extensions is optional.

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

extensions (optional)

A cell array of character arrays that specifies the extensions (file
types) of files for which to search and include in the update processing.
By default, the function searches for files with a .c extension. The
function checks files and updates paths and extensions based on the
order in which you list the extensions in the cell array. For example,
if you specify {'.c' '.cpp'}, and a folder contains myfile.c and
myfile.cpp, an instance of myfile is updated to myfile.c.

• Description:

Using paths that already exist in a project’s build information, the
updateFilePathsAndExtensions function checks whether file references
in the build information need to be updated with a path or file extension.
This function can be particularly useful for

- Maintaining build information for a toolchain that requires the use of
file extensions

- Updating multiple customized instances of build information for a given
project

updateFileSeparator

• Purpose: Change file separator used in project’s build information.

• Syntax: updateFileSeparator(buildinfo, separator)

• Arguments:

buildinfo

Build information stored in RTW.BuildInfo.

19-167

19 Generating C/C++ Code from MATLAB® Code

separator

A character array that specifies the file separator \ (Windows) or /
(UNIX) to be applied to file path specifications.

• Description:

The updateFileSeparator function changes instances of the current
file separator (/ or \) in a project’s build information to the specified file
separator.

The default value for the file separator matches the value returned by the
MATLAB command filesep. For makefile based builds, you can override
the default by defining a separator with the MAKEFILE_FILESEP macro in
the template makefile. If the GenerateMakefile parameter is set, the
MATLAB Coder software overrides the default separator and updates the
build information after evaluating the PostCodeGenCommand configuration
parameter.

Write Post-Code-Generation Command
A post-code-generation command is a MATLAB file that typically calls
functions that get data from or add data to the build information object. For
example, you can access the project name in the variable projectName and
the RTW.BuildInfo object in the variable buildInfo. You can write the
command as a script or a function.

If You Write the Command as a... Then the...

Script Script can gain access to the project
(top-level function) name and the
build information directly.

Function Function can receive the project
name and the build information as
arguments.

If your post-code-generation command calls user-defined functions, make sure
that the functions are on the MATLAB path. If the build process cannot find a
function that you use in your command, the process fails.

19-168

Customize the Post-Code-Generation Build Process

You can call combinations of build information functions to customize the
post-code-generation build. See “Write and Use Post-Code-Generation
Command at the Command Line” on page 19-170

Write Post-Code-Generation Command as a Script
Set PostCodeGenCommand to the script name.

At the command line, enter:

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'ScriptName';

Write Post-Code-Generation Command as a Function
Set PostCodeGenCommand to the function signature. When you define the
command as a function, you can specify an arbitrary number of input
arguments. If you want to access the project name, include projectName
as an argument. If you want to modify or access build information, add
buildInfo as an argument.

At the command line, enter:

cfg = coder.config('lib');
cfg.PostCodeGenCommand = 'FunctionName(projectName, buildInfo)';

Use Post-Code-Generation Command to Customize
Build
After you have written a post-code-generation command, you must include
this command in the build processing. You can include the command from the
project settings dialog box or the command line.

Use Post-Code-Generation Command in the Project Settings
Dialog Box.

1 In the MATLAB Coder project, click the Build tab.

2 On this tab, click the More settings link to view the project settings for
the selected output type.

19-169

19 Generating C/C++ Code from MATLAB® Code

3 In the Project Settings dialog box, click the Custom Code tab.

4 On this tab, set the Post-code-generation command parameter. Close
the dialog box.

How you use the PostCodeGenCommand option depends on whether
you write the command as a script or a function. See “Use
Post-Code-Generation Command at the Command Line” on page 19-170
and “Use Post-Code-Generation Command in the Project Settings Dialog
Box.” on page 19-169.

Use Post-Code-Generation Command at the Command Line
Set the PostCodeGenCommand option for the code generation
configuration object (coder.MexCodeConfig, coder.CodeConfig or
coder.EmbeddedCodeConfig).

How you use the PostCodeGenCommand option depends on whether you write
the command as a script or a function. See “Use Post-Code-Generation
Command at the Command Line” on page 19-170 and “Use
Post-Code-Generation Command in the Project Settings Dialog Box.” on page
19-169.

Write and Use Post-Code-Generation Command at
the Command Line
The following example shows how to write and use a post-code-generation
command as a function. The setbuildargs function takes the build
information object as a parameter, sets up link options, and adds them to
the build information object.

1 Create a post-code-generation command as a function, setbuildargs,
which takes the buildInfo object as a parameter:

function setbuildargs(buildInfo)
% The example being compiled requires pthread support.
% The -lpthread flag requests that the pthread library be included
% in the build

linkFlags = {'-lpthread'};
buildInfo.addLinkFlags(linkFlags);

19-170

Customize the Post-Code-Generation Build Process

2 Create a code generation configuration object. Set the PostCodeGenCommand
option to 'setbuildargs(buildInfo)' so that this command is included in
the build processing:

cfg = coder.config('mex');
cfg.PostCodeGenCommand = 'setbuildargs(buildInfo)';

3 Using the -config option, generate a MEX function passing the
configuration object to codegen. For example, for the function foo that has
no input parameters:

codegen -config cfg foo

19-171

19 Generating C/C++ Code from MATLAB® Code

Code Generation Reports

In this section...

“About Code Generation Reports” on page 19-172

“Enable Code Generation Reports” on page 19-175

“View Your MATLAB Code in a Report” on page 19-176

“Viewing Call Stack Information” on page 19-177

“View Generated C/C++ Code in a Report” on page 19-180

“Viewing the Build Summary Information” on page 19-180

“View Error and Warning Messages in a Report” on page 19-181

“Viewing Variables in Your MATLAB Code” on page 19-182

“Viewing Target Build Information” on page 19-188

“Keyboard Shortcuts for the Code Generation Report” on page 19-189

“Report Limitations” on page 19-190

About Code Generation Reports
At code-generation time, MATLAB Coder produces reports to help you debug
your MATLAB code and to verify that your MATLAB code is suitable for
code generation.

Report Generation
If MATLAB Coder detects errors or warnings, the software automatically
produces a code generation report. You can also use an option to request
reports even if MATLAB Coder does not detect errors or warnings.

The report provides links to your MATLAB code and C/C++ code files. It also
provides compile-time type information for the variables and expressions
in your MATLAB code. This information simplifies finding sources of error
messages and aids understanding of type propagation rules.

19-172

Code Generation Reports

Names and Locations of Code Generation Reports
MATLAB Coder produces code generation reports in the following locations.
The top-level html file at each location is index.html.

• For MEX functions:

output_folder
/mex/primary_function_name/html

• For C/C++ executables:

output_folder/exe/primary_function_name/html

• For C/C++ libraries:

output_folder/lib/primary_function_name/html

Note The default output folder is codegen, but you can specify a different
folder. For more information, see “Specify Output File Locations” on page
16-41.

Opening Code Generation Reports

Opening Code Generation Reports in the Project Interface. On the
project Build tab, the Build Results pane provides information about the
most recent build. If the code generation report is enabled or build errors
occur, MATLAB Coder generates a report that provides detailed information
about the most recent build and provides a link to the report.

To view the report, click the View report link. After a build completes, this
report provides links to your MATLAB code and generated C/C++ files as well
as compile-time type information for the variables in your MATLAB code. If
build errors occur, it lists errors and warnings.

Opening Code Generation Reports at the Command Line. If you specify
the -launchreport option, the code generation report opens automatically.

19-173

19 Generating C/C++ Code from MATLAB® Code

If MATLAB Coder did not detect build errors, to open the code generation
report, in the MATLAB Command Window, click the View report link.

If MATLAB Coder detected build errors, to open the error report, in the
MATLAB Command Window, click the Open error report link.

Description of Code Generation Reports
When you generate code for MATLAB files from a MATLAB Coder project, or
from the command line using the codegen -report option, MATLAB Coder
generates a report. The following example shows a report for a completed
build.

The report provides the following information, as applicable:

19-174

Code Generation Reports

• MATLAB code information, including a list of functions and classes and
their build status

• Call stack information, providing information on the nesting of function
calls

• Links to generated C/C++ code files

• Summary of build results, including type of target and number of warnings
or errors

• List of error and warning messages

• List of variables in your MATLAB code

• Target build log that records compilation and linking activities

Enable Code Generation Reports

How to Enable Code Generation Reports in the Project Settings
Dialog Box

1 On the project Build tab, click the More settings link.

2 In the Project Settings dialog box, click the Debugging tab.

3 On the Debugging tab, check Always create a code generation report.

If you want the code generation or error report to open automatically when
MATLAB Coder finishes building a project, check Automatically launch
a report if one is generated.

How to Enable Code Generation Reports at the Command Line
Use the codegen function -report option. To generate a standalone C/C++
static library and code generation report for a function foo that has no input
parameters, at the MATLAB command line, enter:

codegen -config:lib -report foo

If you want the code generation or error report to open automatically, use the
-launchreport option instead of the -report option.

19-175

19 Generating C/C++ Code from MATLAB® Code

View Your MATLAB Code in a Report
To view your MATLAB code, click the MATLAB code tab. The code
generation report displays the code for the function or class highlighted in the
list on this tab.

The MATLAB code tab provides:

• A list of the MATLAB functions and classes that have been built.
Depending on the build results, the report displays icons next to each
function or class name:

- Errors in function or class.

- Warnings in function or class.

- Completed build, no errors or warnings.

• A filter control. You can use Filter functions and methods to sort your
functions and methods by:

- Size

- Complexity

- Class

Viewing Local Functions
The code generation report annotates the local function with the name of the
parent function in the list of functions on the MATLAB code tab.

For example, if the MATLAB function fcn1 contains the local function
local_fcn1, and fcn2 contains the local function local_fcn2, the report
displays:

fcn1 > local_fcn1
fcn2 > local_fcn2

19-176

Code Generation Reports

Viewing Specializations
If your MATLAB function calls the same function with different types of
inputs, the code generation report numbers each of these specializations
in the list of functions on the MATLAB code tab.

For example, if the function fcn calls the function subfcn with different
types of inputs:

function y = fcn(u) %#codegen
% Specializations
y = y + subfcn(single(u));
y = y + subfcn(double(u));

The code generation report numbers the specializations in the list of functions:

fcn > subfcn > 1
fcn > subfcn > 2

Viewing Extrinsic Functions
The report highlights the extrinsic functions that are supported only within
the MATLAB environment.

Viewing Call Stack Information
The code generation report provides call stack information:

• On the Call stack tab.

19-177

19 Generating C/C++ Code from MATLAB® Code

• In the list of Calls at the top right of the report.

This list shows the calls from and to the function or method. If a function
is called from more than one function, this list provides details of each
call-site. Otherwise, the list is disabled.

Viewing Call Stack Information on the Call stack Tab
To view call stack information, click the Call stack tab.

The call stack lists the functions and methods in the order that the top-level
function calls them. It also lists the local functions that each function calls.

For more than one entry-point function, the call stack displays a separate
tree for each entry point. You can easily distinguish between shared and
entry-point specific functions. If you click a shared function, the report
highlights instances of this function. If you click an entry-point specific
function, the report highlights only that instance.

For example, in the following call stack, ezep1 and ezep2 are entry-point
functions. identity is an entry-point specific function, called only by ezep1.
Functions ezep3 and shared are shared functions.

19-178

Code Generation Reports

����$"�
	�������	
��

����$"�
	������	�	������	
�

Viewing Call Sites in the Callers List
If a function or method is called from more than one function or method, or if
the function or method calls other functions or methods, the Calls list provides
details of each call site. To navigate between call sites, select a call site from
the Calls list. If the function is not called more than once, this list is disabled.

If you select the entry-point function ezep2 in the call stack, the Calls list
displays the other call-site in ezep1.

19-179

19 Generating C/C++ Code from MATLAB® Code

View Generated C/C++ Code in a Report
To view a list of the generated C/C++ files, click the C-code tab. The code
generation report displays a list of the generated files. Click a file in the
list to view the code in the code pane.

Tracing Generated Code Back to MATLAB Source Code
You can configure codegen to generate C code that includes the MATLAB
source code as comments. In these auto-generated comments, codegen
precedes each line of source code with a traceability tag that provides details
about the location of the source code. For more information, see “Generation
of Traceable Code” on page 19-84.

For code generated with an Embedded Coder license, these traceability tags
are hyperlinks. Click a tag to go the relevant line in the source code in the
MATLAB editor.

Navigating to C/C++ Code Source Files
When viewing C/C++ code in the code pane, click the blue link to the source
file at the top of the pane to open the associated source code file in the
MATLAB editor.

Viewing Type Definitions
The code generation report provides links to the definitions of data types.
When viewing C/C++ code in the code pane, click the blue link for a data
type to see its definition.

Viewing Custom Code
The report displays custom code with color syntax highlighting. To learn
what these colors mean and how to customize color settings, see “Colors in
the MATLAB Editor”.

Viewing the Build Summary Information
To view a summary of the build results, including type of target and number
of errors or warnings, click the Summary tab.

19-180

Code Generation Reports

View Error and Warning Messages in a Report
MATLAB Coder automatically reports errors and warnings. If errors occur
during the build, MATLAB Coder does not generate code. The report lists the
messages in the order that MATLAB Coder detects them. It is a best practice
to address the first message in the list, because often subsequent errors and
warnings are related to the first message. If the build produces warnings, but
no errors, MATLAB Coder does generate code.

The code generation report provides information about errors and warnings
by:

• Listing errors and warnings on the All Messages tab. The report lists
these messages in chronological order.

• Highlighting errors and warnings on the MATLAB code pane.

• If applicable, recording compilation and linking issues on the Target
Build Log tab. If compilation or linking errors occur, the code generation
report opens with the Target Build Log tab selected so that you can view
the build log.

Viewing Errors and Warnings in the All Messages Tab
If errors or warnings occur during the build, click the All Messages tab to
view a complete list of these messages. The code generation report marks
messages:

Error

Warning

To locate the incorrect line of code for an error or warning in the list, click
the message in the list. The code generation report highlights errors in the
list and MATLAB code in red and highlights warnings in orange. Click the
blue line number next to the incorrect line of code in the MATLAB code pane
to go to the error in the source file.

Note You can fix errors only in the source file.

19-181

19 Generating C/C++ Code from MATLAB® Code

Viewing Error and Warning Information in Your MATLAB Code
If errors or warnings occur during the build, the code generation report
underlines them in your MATLAB code. The report underlines errors in red
and underlines warnings in orange. To learn more about a particular error or
warning, place your pointer over the underlined text.

Viewing Compilation and Linking Errors and Warnings
If compilation or linking errors occur, the code generation report opens with
the Target Build Log tab selected so that you can view the build log.

Viewing Variables in Your MATLAB Code
The report provides compile-time type information for the variables and
expressions in your MATLAB code, including name, type, size, complexity,
and class. It also provides type information for fixed-point data types,
including word length and fraction length. You can use this type information
to find sources of error messages and to understand type propagation rules.

You can view information about the variables in your MATLAB code:

• On the Variables tab, view the list.

• In your MATLAB code, place your cursor over the variable name.

In the MATLAB code, an orange variable name indicates a compile-time
constant argument to an entry-point or a specialized function. The
information for these variables includes the value. You can use this
information to understand the function signature. You can also use this
information to see when code generation created specializations of a
function with different constant argument values.

Viewing Variables in the Variables Tab
To view a list of the variables in your MATLAB function, click the Variables
tab. The report displays a complete list of variables in the order that they
appear in the function that you selected on the MATLAB code tab. Clicking
a variable in the list highlights instances of that variable, and scrolls the
MATLAB code pane so that you can view the first instance.

19-182

Code Generation Reports

As applicable, the report provides the following information about each
variable:

• Order

• Name

• Type

• Size

• Complexity

• Class

• DataTypeMode (DT mode) — for fixed-point data types only. For more
information, see “DataTypeMode”.

• Signed — sign information for built-in data types, signedness information
for fixed-point data types.

• Word length (WL) — for fixed-point data types only.

• Fraction length (FL) — for fixed-point data types only.

Note For more information on viewing fixed-point data types, see “Use
Fixed-Point Code Generation Reports”.

It only displays a column if at least one variable in the code has information in
that column. For example, if the code does not contain fixed-point data types,
the report does not display the DT mode, WL or FL columns.

Sorting Variables in the Variables Tab. By default, the report lists the
variables in the order that they appear in the selected function.

You can sort the variables by clicking the column headings on the Variables
tab. To sort the variables by multiple columns, hold down the Shift key when
clicking the column headings.

To restore the list to the original order, click the Order column heading.

19-183

19 Generating C/C++ Code from MATLAB® Code

Viewing Structures on the Variables Tab. You can expand structures
listed on the Variables tab to display the field properties.

If you sort the variables by type, size, complexity or class, a structure and its
fields might not appear sequentially in the list. To restore the list to the
original order, click the Order column heading.

Viewing Information About Variable-Size Arrays in the Variables
Tab. For variable-size arrays, the Size field includes information on the
computed maximum size of the array. The size of each array dimension that
varies is prefixed with a colon :.

In the following report, variable A is variable-size. Its maximum computed
size is 1×100.

If the code generation software cannot compute the maximum size of a
variable-size array, the report displays the size as :?.

19-184

Code Generation Reports

If you declare a variable-size array and then subsequently fix the dimensions
of this array in the code, the report appends * to the size of the variable. In
the generated C code, this variable appears as a variable-size array, but the
size of its dimensions do not change during execution.

For more information on how to use the size information for variable-sized
arrays, see “Variable-Size Data Definition for Code Generation” on page 7-3.

Viewing Renamed Variables in the Variables Tab. If your MATLAB
function reuses a variable with different size, type, or complexity, the code
generation software attempts to create separate, uniquely named variables
in the generated code. For more information, see “Reuse the Same Variable
with Different Properties” on page 5-11. The report numbers the renamed
variables in the list on the Variables tab. When you place your pointer over
a renamed variable, the report highlights only the instances of this variable
that share the same data type, size, and complexity.

For example, suppose your code uses the variable t in a for-loop to hold a
scalar double, and reuses it outside the for-loop to hold a 5x5 matrix. The
report displays two variables, t>1 and t>2 in the list on the Variables tab.

19-185

19 Generating C/C++ Code from MATLAB® Code

Viewing Information About Variables and Expressions in Your
MATLAB Function Code
To view information about a particular variable or expression in your
MATLAB function code, on the MATLAB code pane, place your pointer
over the variable name or expression. The report highlights variables and
expressions in different colors:

Green, when the variable has data type information at this location
in the code.

For variable-size arrays, the Size field includes information on the computed
maximum size of the array. The size of each array dimension that varies is
prefixed with a colon :. Here the array A is variable-sized with a maximum
computed size of 1 x 100.

19-186

Code Generation Reports

Green with orange text, when a constant argument has data type
and value information. When the variable is a compile-time constant
argument to an entry-point or a specialized function:

• The variable name is orange.

• The information for the variable includes the value.

If you export the value as a variable to the base workspace, you can use the
Workspace browser to view detailed information about the variable.

To export the value to the base workspace:

1 Click the Value link.

2 In the Export Constant Value dialog box, specify the Variable name.

3 Click OK.

The variable and its value appear in the Workspace browser.

19-187

19 Generating C/C++ Code from MATLAB® Code

Pink, when the variable has no data type information.

Purple, information about expressions. You can also view information
about expressions in your MATLAB code. On the MATLAB code pane, place
your pointer over an expression . The report highlights expressions in purple
and provides more detailed information.

Red, when there is error information for an expression. If the code
generation software cannot compute the maximum size of a variable-size
array, the report underlines the variable name and provides error information.

Viewing Target Build Information
If the build completes, MATLAB Coder provides target build information on
the Target Build Log tab, including:

• Build folder

Clicking this link changes the MATLAB current folder to the build folder.

19-188

Code Generation Reports

• Make wrapper

The batch file name that MATLAB Coder used for this build.

• Build log

If compilation or linking errors occur, the code generation report opens with
the Target Build Log tab selected so that you can view the build log.

Keyboard Shortcuts for the Code Generation Report
You can use the following keyboard shortcuts to navigate between the
different panes in the code generation report. Once you have selected a pane,
use the Tab key to advance through data in that pane.

To select ... Use...

MATLAB code Tab Ctrl+m

Call stack Tab Ctrl+k

19-189

19 Generating C/C++ Code from MATLAB® Code

To select ... Use...

C code Tab Ctrl+c

Code Pane Ctrl+w

Summary Tab Ctrl+s

All Messages Tab Ctrl+a

Variables Tab Ctrl+v

Target Build Log Tab Ctrl+t

Report Limitations
The report displays information about the variables and expressions in your
MATLAB code with the following limitations:

varargin and varargout

The report does not support varargin and varargout arrays.

Loop Unrolling

The report does not display full information for unrolled loops. It displays
data types of one arbitrary iteration.

Dead Code

The report does not display information about dead code.

Structures

The report does not provide complete information about structures.

• On theMATLAB code pane, the report does not provide information about
all structure fields in the struct() constructor.

• On the MATLAB code pane, if a structure has a nonscalar field, and an
expression accesses an element of this field, the report does not provide
information for the field.

19-190

Code Generation Reports

Column Headings on Variables Tab

If you scroll through the list of variables, the report does not display the
column headings on the Variables tab.

Multiline Matrices

On the MATLAB code pane, the report does not support selection of
multiline matrices. It supports only selection of individual lines at a time.
For example, if you place your pointer over the following matrix, you cannot
select the entire matrix.

out1 = [1 2 3;
4 5 6];

The report does support selection of single line matrices.

out1 = [1 2 3; 4 5 6];

19-191

19 Generating C/C++ Code from MATLAB® Code

Troubleshooting

Run-time Stack Overflow
If your C compiler reports a run-time stack overflow, set the value of the
maximum stack usage parameter to be less than the available stack size.
In a project, on the Project Settings dialog box Memory tab, set the
Stack usage max parameter. For command-line configuration objects
(coder.MexCodeConfig, coder.CodeConfig, coder.EmbeddedCodeConfig),
set the StackUsageMax parameter.

19-192

Package Code For Use in Other Development Environments

Package Code For Use in Other Development Environments

In this section...

“When to Package Code” on page 19-193

“Package Generated Code in a Project” on page 19-193

“Package Generated Code at the Command Line” on page 19-195

“Specify packNGo options” on page 19-196

When to Package Code
If you need to relocate the generated code files to another development
environment, such as a system or an integrated development environment
(IDE) that does not include MATLAB, use either the packNGo function at the
command line or the package option in a project. The files are packaged in a
compressed file that you can relocate and unpack using a standard zip utility.

See “Package Generated Code at the Command Line” on page 19-195 and
“Package Generated Code in a Project” on page 19-193.

Package Generated Code in a Project
This example shows how to package generated code into a zip file for
relocation using the Package option in a MATLAB Coder project. By default,
the zip file is created in the project folder.

1 In a local writable folder, for example c:\work, write a function foo that
takes two double inputs.

function y = foo(A,B)
y = A + B;

end

2 In the same folder, create a new project.

coder -new package.prj

3 Add the file foo as an entry-point to the project.

19-193

19 Generating C/C++ Code from MATLAB® Code

4 Specify that inputs A and B are scalar doubles.

5 On the project Build tab, set Output type to build a static or dynamic
library or executable. You cannot package the code generated for MEX
targets.

6 At the top of the project, click Package.

Because you have not already built the project, MATLAB Coder builds
the project.

7 When prompted, save the package file using the default path and file
name. By default, MATLAB Coder derives the name of the package file
from the project name and saves it in the current working folder. This zip
file contains the C code and header files required for relocation. It does not
contain compile flags, defines, or makefiles.

8 Inspect the contents of package_pkg.zip in your working folder to verify
that it is ready for relocation to the destination system. Depending on the
zip tool you use you might be able to open and inspect the file without
unpacking it.

You can now relocate the resulting zip file to the destination development
environment and unpack the file.

19-194

Package Code For Use in Other Development Environments

Package Generated Code at the Command Line
This example shows how to package generated code into a zip file for
relocation using the packNGo function at the command line.

1 In a local writable folder, for example c:\work, write a function foo that
takes two double inputs.

function y = foo(A,B)
y = A + B;

end

2 Generate a static library for function foo. (packNGo does not package
MEX function code.)

codegen -report -config:lib foo -args {0,0}

codegen generates code in the c:\work\codegen\lib\foo folder.

3 Load the buildInfo object.

load('c:\work\codegen\lib\foo\buildInfo.mat')

4 Create the zip file.

packNGo(buildInfo, 'fileName', 'foo.zip');

Alternatively, use the notation:

buildInfo.packNGo('fileName', 'foo.zip');

The packNGo function creates a zip file, foo.zip, in the current working
folder. This zip file contains the C code and header files required for
relocation. It does not contain compile flags, defines, or makefiles.

In this example, you specify only the file name. Optionally, you can specify
additional packaging options. See “Specify packNGo options” on page
19-196.

5 Inspect the contents of foo.zip to verify that it is ready for relocation to the
destination system. Depending on the zip tool you use you might be able to
open and inspect the file without unpacking it. If you need to unpack the
file and you packaged the generated code files as a hierarchical structure,

19-195

19 Generating C/C++ Code from MATLAB® Code

you will need to unpack the primary and secondary zip files. When you
unpack the secondary zip files, relative paths of the files are preserved.

You can now relocate the resulting zip file to the destination development
environment and unpack the file.

Specify packNGo options
You can specify options for the packNGo function.

To... Specify...

Change the structure of the
file packaging to hierarchical

packNGo(buildInfo, {'packType'
'hierarchical'});

Change the structure of the
file packaging to hierarchical
and rename the primary zip
file

packNGo(buildInfo, {'packType'
'hierarchical'...
'fileName' 'zippedsrcs'});

Include all header files found
on the include path (rather
than the minimal header
files required to build the
code) in the zip file

packNGo(buildInfo, {'minimalHeaders'
false});

For more information, see packNGo in “Build Information Methods” on page
19-131.

Choose a Structure for the Zip File
Before you generate and package the files, decide whether you want the files
to be packaged in a flat or hierarchical folder structure. By default, the
packNGo function packages the files in a single, flat folder structure. This
approach is the simplest and might be the optimal choice.

19-196

Package Code For Use in Other Development Environments

If... Then Use a...

You are relocating files to an IDE
that does not use the generated
makefile, or the code is not
dependent on the relative location of
required static files

Single, flat folder structure

The target development environment
must maintain the folder structure
of the source environment because
it uses the generated makefile, or
the code is dependent on the relative
location of files

Hierarchical structure

If you use a hierarchical structure, the packNGo function creates two levels
of zip files. There is a primary zip file, which in turn contains the following
secondary zip files:

• mlrFiles.zip — files in your matlabroot folder tree

• sDirFiles.zip— files in and under your build folder where you initiated
code generation

• otherFiles.zip — required files not in the matlabroot or start folder
trees

Paths for the secondary zip files are relative to the root folder of the primary
zip file, maintaining the source development folder structure.

19-197

19 Generating C/C++ Code from MATLAB® Code

19-198

20

Custom Toolchain
Registration

• “Custom Toolchain Registration” on page 20-2

• “About coder.make.ToolchainInfo” on page 20-6

• “Create and Edit Toolchain Definition File” on page 20-8

• “Toolchain Definition File with Commentary” on page 20-10

• “Create and Validate ToolchainInfo Object” on page 20-18

• “Register the Custom Toolchain” on page 20-19

• “Use the Custom Toolchain” on page 20-22

• “Troubleshooting Custom Toolchain Validation” on page 20-23

20 Custom Toolchain Registration

Custom Toolchain Registration

In this section...

“What Is a Custom Toolchain?” on page 20-2

“What Is a Factory Toolchain?” on page 20-2

“What is a Toolchain Definition?” on page 20-3

“Key Terms” on page 20-4

“Typical Workflow” on page 20-5

What Is a Custom Toolchain?
You can add support for software build tools to MATLAB Coder software.
For example, you can add support for a third-party compiler/linker/archiver
(toolchain) to your MATLAB Coder software. This can be useful when a
toolchain has support and optimizations for a specific type of processor
or hardware. When you add support for toolchains, we call these custom
toolchains.

What Is a Factory Toolchain?
MATLAB Coder software includes support for specific toolchains. We call
these factory toolchains to distinguish them from custom toolchains. If
you install factory toolchains on your host computer, MATLAB Coder can
automatically detect and use them. Support for factory toolchains depends on
the host operating system. A complete list of supported toolchains is available
at http://www.mathworks.com/support/compilers/.

20-2

http://www.mathworks.com/support/compilers/

Custom Toolchain Registration

What is a Toolchain Definition?

A toolchain definition provides MATLAB Coder software with information
about the software build tools, such as the compiler, linker, archiver.
MATLAB Coder software uses this information, along with a configuration
object or project, to build the generated code. This approach can be used when
generating static libraries, dynamic libraries, and executables. MEX-file
generation uses a different approach. To specify which compiler to use
for MEX-function generation, use mex -setup. For more information, see
“Setting Up the C/C++ Compiler”.

MATLAB Coder software comes with a set of registered factory toolchain
definitions. You can create and register custom toolchain definitions. You can
customize and manage toolchain definitions. You can share custom toolchain
definitions with others running MATLAB Coder software.

20-3

20 Custom Toolchain Registration

If you install toolchain software for one of the factory toolchains, MATLAB
Coder can automatically detect and use the toolchain software. For more
information about factory toolchains in MATLAB Coder software, see
http://www.mathworks.com/support/compilers/

Key Terms
It is helpful to understand the following concepts:

• Toolchain — Software that can create a binary executable and libraries
from source code. A toolchain can include:

- Prebuild tools that set up the environment

- Build tools, such as an Assembler, C compiler, C++ Compiler, Linker,
Archiver, that build a binary executable from source code

- Postbuild tools that download and run the executable on the hardware,
and clean up the environment

• Custom toolchain — A toolchain that you define and register for use by
MATLAB Coder software

• Factory toolchains — Toolchains that are predefined and registered in
MATLAB Coder software

• Registered toolchains — The sum of custom and factory toolchain
definitions registered in MATLAB Coder software

• ToolchainInfo object — An instance of the coder.make.ToolchainInfo
class that contains a toolchain definition. You save the ToolchainInfo
object as a MAT file, register the file with MATLAB Coder. Then you can
configure MATLAB Coder to load the ToolchainInfo object during code
generation.

• Toolchain definition file— A MATLAB file that defines the properties of a
toolchain. You use this file to create a ToolchainInfo object.

Note This documentation also refers to the ToolchainInfo object as a
coder.make.ToolchainInfo object.

20-4

http://komodo.mathworks.com/main/gecko/view?Record=915815

Custom Toolchain Registration

Typical Workflow
The typical workflow for creating and using a custom toolchain definition is:

1 “Create and Edit Toolchain Definition File” on page 20-8

a Create a toolchain definition file that returns a
coder.make.ToolchainInfo object.

b Update the file with information about the custom toolchain.

2 “Create and Validate ToolchainInfo Object” on page 20-18

a Use the toolchain definition file to create a ToolchainInfo object in
the MATLAB workspace.

b Validate the ToolchainInfo object.

c Fix validation issues by updating the toolchain definition file, and
creating/validating the updated ToolchainInfo object.

d Create a valid ToolchainInfo object and save it to a MAT-file.

3 “Register the Custom Toolchain” on page 20-19

a Create an rtwTargetInfo.m file and update it with information about
the MAT-file.

b Register the custom toolchain in MATLAB Coder software using the
rtwTargetInfo.m file.

4 “Use the Custom Toolchain” on page 20-22

a Configure MATLAB Coder software to use the custom toolchain.

b Build and run an executable using the custom toolchain.

This workflow requires an iterative approach, with multiple cycles to arrive at
a finished version of the custom ToolchainInfo object. You will need access
to detailed information about the custom toolchain.

For a tutorial example of this workflow, see “Adding a Custom Toolchain”.

For more information about the ToolchainInfo object, see “About
coder.make.ToolchainInfo” on page 20-6.

20-5

20 Custom Toolchain Registration

About coder.make.ToolchainInfo
The following properties in coder.make.ToolchainInfo represent your
custom toolchain:

• coder.make.ToolchainInfo.PrebuildTools – Tools used before compiling
the source files into object files.

• coder.make.ToolchainInfo.BuildTools – Tools used for compiling source
files and linking/archiving them to form a binary.

• coder.make.ToolchainInfo.PostbuildTools – Tools used after the
linker/archiver is invoked.

• coder.make.ToolchainInfo.BuilderApplication – Tools used to call the
PrebuildTools, BuildTools, and PostbuildTools. For example: gmake,
nmake.

Each configuration in coder.make.ToolchainInfo.BuildConfigurations
applies a set of options to the build tools specified by
coder.make.ToolchainInfo.BuildTools. By default, these
configurations alter the way the assembler, compiler, linker, and archiver
operate to produce faster builds, faster runs, and debug.

If you instantiate coder.make.ToolchainInfo to support building sources
that involve assembler, C, or C++ files, the coder.make.ToolchainInfo
object contains the default set of build tools shown here.

20-6

About coder.make.ToolchainInfo

20-7

20 Custom Toolchain Registration

Create and Edit Toolchain Definition File
This example shows how to create a toolchain definition file by copying and
pasting an example file. You then update the relevant elements, and add
or remove other elements as needed for your custom toolchain. This is the
first step in the typical workflow for creating and using a custom toolchain
definition. For more information about the workflow, see “Typical Workflow”
on page 20-5.

1 Review the list of registered toolchains. In the MATLAB Command
Window, enter:

coder.make.getToolchains

The resulting output includes the list of factory toolchains for your host
computer environment, and previously-registered custom toolchains. For
example, the following output shows the factory toolchains for a host
computer running 64-bit Windows and no custom toolchains.

ans =

'Microsoft Visual C++ 2012 v11.0 | nmake (64-bit Windows)'
'Microsoft Visual C++ 2010 v10.0 | nmake (64-bit Windows)'
'Microsoft Visual C++ 2008 v9.0 | nmake (64-bit Windows)'
'Microsoft Windows SDK v7.1 | nmake (64-bit Windows)'

2 Create the folder of example files from the “Adding a Custom Toolchain”
example by entering the following command in the MATLAB Command
Window:

coderdemo_setup('coderdemo_intel_compiler');

3 Copy the example toolchain definition file to another location and rename
it. For example:

copyfile('intel_tc','../newtoolchn_tc')

4 Open the new toolchain definition file in the MATLAB Editor. For example:

cd ../
edit newtoolchn_tc.m

20-8

Create and Edit Toolchain Definition File

5 Edit the contents of the new toolchain definition file, providing information
for the custom toolchain.

For expanded commentary on an example toolchain definition file, see
“Toolchain Definition File with Commentary” on page 20-10.

For reference information about the class attributes and methods you can
use in the toolchain definition file, see coder.make.ToolchainInfo.

6 Save your changes to the toolchain definition file.

Next, create and validate a coder.make.ToolchainInfo object from the
toolchain definition file, as described in “Create and Validate ToolchainInfo
Object” on page 20-18

20-9

20 Custom Toolchain Registration

Toolchain Definition File with Commentary

In this section...

“Steps Involved in Writing a Toolchain Definition File” on page 20-10

“Write a Function That Creates a ToolchainInfo Object” on page 20-10

“Setup” on page 20-11

“Macros” on page 20-12

“C Compiler” on page 20-12

“C++ Compiler” on page 20-13

“Linker” on page 20-14

“Archiver” on page 20-15

“Builder” on page 20-15

“Build Configurations” on page 20-16

Steps Involved in Writing a Toolchain Definition File
This example shows how to create a toolchain definition file and explains
each of the steps involved. The example is based on the definition file used
in “Adding a Custom Toolchain”. For more information about the workflow,
see “Typical Workflow” on page 20-5.

Write a Function That Creates a ToolchainInfo Object

function tc = intel_tc

% INTEL_TC Creates a Intel v12.1 ToolchainInfo object.

% This can be used as a template to add other toolchains on Windows.

% Copyright 2012 The MathWorks, Inc.

tc = coder.make.ToolchainInfo('BuildArtifact', 'nmake makefile');

tc.Name = 'Intel v12.1 | nmake makefile (64-bit Windows)';

tc.Platform = 'win64';

tc.SupportedVersion = '12.1';

20-10

Toolchain Definition File with Commentary

tc.addAttribute('TransformPathsWithSpaces');

tc.addAttribute('RequiresCommandFile');

tc.addAttribute('RequiresBatchFile');

The preceding code:

• Defines a function, intel_tc, that creates a coder.make.ToolchainInfo
object and assigns it to a handle, tc.

• Overrides the BuildArtifact property to create a makefile for nmake
instead of for gmake.

• Assigns values to the Name, Platform, and SupportedVersion properties
for informational and display purposes.

• Adds three custom attributes to Attributes property that are required
by this toolchain.

• 'TransformPathsWithSpaces' converts paths that contain spaces to short
Windows paths.

• 'RequiresCommandFile' generates a linker command file that calls the
linker. This avoids problems with calls that exceed the command line limit
of 256 characters.

• 'RequiresBatchFile' creates a .bat file that calls the builder application.

Setup

% ------------------------------

% Setup

% ------------------------------

% Below we are using %ICPP_COMPILER12% as root folder where Intel Compiler is installed.

% You can either set an environment variable or give full path to the

% compilervars.bat file

tc.ShellSetup{1} = 'call %ICPP_COMPILER12%\bin\compilervars.bat intel64';

The preceding code:

• Assigns a system call to the ShellSetup property.

• The coder.make.ToolchainInfo.setup method runs these system calls
before it runs tools specified by PrebuildTools property.

20-11

20 Custom Toolchain Registration

• Calls compilervars.bat, which is shipped with the Intel® compilers, to get
the set of environment variables for Intel compiler and linkers.

Macros

% ------------------------------

% Macros

% ------------------------------

tc.addMacro('MW_EXTERNLIB_DIR',['$(MATLAB_ROOT)\extern\lib\' tc.Platform '\microsoft']);

tc.addMacro('MW_LIB_DIR',['$(MATLAB_ROOT)\lib\' tc.Platform]);

tc.addMacro('CFLAGS_ADDITIONAL','-D_CRT_SECURE_NO_WARNINGS');

tc.addMacro('CPPFLAGS_ADDITIONAL','-EHs -D_CRT_SECURE_NO_WARNINGS');

tc.addMacro('LIBS_TOOLCHAIN','$(conlibs)');

tc.addMacro('CVARSFLAG','');

tc.addIntrinsicMacros({'ldebug', 'conflags', 'cflags'});

The preceding code:

• Uses coder.make.ToolchainInfo.addMacro method to define macros and
assign values to them.

• Uses coder.make.ToolchainInfo.addIntrinsicMacros to define macros
whose values are specified by the toolchain, outside the scope of your
MathWorks software.

C Compiler

% ------------------------------

% C Compiler

% ------------------------------

tool = tc.getBuildTool('C Compiler');

tool.setName('Intel C Compiler');

tool.setCommand('icl');

tool.setPath('');

tool.setDirective('IncludeSearchPath', '-I');

tool.setDirective('PreprocessorDefine', '-D');

20-12

Toolchain Definition File with Commentary

tool.setDirective('OutputFlag', '-Fo');

tool.setDirective('Debug', '-Zi');

tool.setFileExtension('Source', '.c');

tool.setFileExtension('Header', '.h');

tool.setFileExtension('Object', '.obj');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the C compiler

• Assigns values to the build tool object properties

• Creates directives and file extensions using name-value pairs

• Sets a command pattern.

• You can use setCommandPattern method to control the use of
space characters in commands. For example, the two bars in
OUTPUT_FLAG<||>OUTPUT do not permit a space character between the
output flag and the output.

C++ Compiler

% ------------------------------

% C++ Compiler

% ------------------------------

tool = tc.getBuildTool('C++ Compiler');

tool.setName('Intel C++ Compiler');

tool.setCommand('icl');

tool.setPath('');

tool.setDirective('IncludeSearchPath', '-I');

tool.setDirective('PreprocessorDefine', '-D');

tool.setDirective('OutputFlag', '-Fo');

tool.setDirective('Debug', '-Zi');

tool.setFileExtension('Source', '.cpp');

20-13

20 Custom Toolchain Registration

tool.setFileExtension('Header', '.hpp');

tool.setFileExtension('Object', '.obj');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the C++ compiler

• Is very similar to the build tool object for the C compiler

Linker

% ------------------------------

% Linker

% ------------------------------

tool = tc.getBuildTool('Linker');

tool.setName('Intel C/C++ Linker');

tool.setCommand('xilink');

tool.setPath('');

tool.setDirective('Library', '-L');

tool.setDirective('LibrarySearchPath', '-I');

tool.setDirective('OutputFlag', '-out:');

tool.setDirective('Debug', '');

tool.setFileExtension('Executable', '.exe');

tool.setFileExtension('Shared Library', '.dll');

tool.DerivedFileExtensions = horzcat(tool.DerivedFileExtensions, { ...

['_' tc.Platform '.lib'], ...

['_' tc.Platform '.exp']});

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the linker

20-14

Toolchain Definition File with Commentary

• Assigns values to the coder.make.BuildTool.DerivedFileExtensions

Archiver

% ------------------------------

% Archiver

% ------------------------------

tool = tc.getBuildTool('Archiver');

tool.setName('Intel C/C++ Archiver');

tool.setCommand('xilib');

tool.setPath('');

tool.setDirective('OutputFlag', '-out:');

tool.setFileExtension('Static Library', '.lib');

tool.setCommandPattern('|>TOOL<| |>TOOL_OPTIONS<| |>OUTPUT_FLAG<||>OUTPUT<|');

The preceding code:

• Creates a build tool object for the archiver.

Builder

% ------------------------------

% Builder

% ------------------------------

tc.setBuilderApplication(tc.Platform);

The preceding code:

• Gives the value of coder.make.ToolchainInfo.Platform as the argument
for setting the value of BuilderApplication. This sets the default values
of the builder application based on the platform. For example, when
Platform is win64, this line sets the delete command to 'del'; the display

20-15

20 Custom Toolchain Registration

command to 'echo', the file separator to '\', and the include directive
to '!include'.

Build Configurations

% --

% BUILD CONFIGURATIONS

% --

optimsOffOpts = {'/c /Od'};

optimsOnOpts = {'/c /O2'};

cCompilerOpts = '$(cflags) $(CVARSFLAG) $(CFLAGS_ADDITIONAL)';

cppCompilerOpts = '$(cflags) $(CVARSFLAG) $(CPPFLAGS_ADDITIONAL)';

linkerOpts = {'$(ldebug) $(conflags) $(LIBS_TOOLCHAIN)'};

sharedLinkerOpts = horzcat(linkerOpts,'-dll -def:$(DEF_FILE)');

archiverOpts = {'/nologo'};

% Get the debug flag per build tool

debugFlag.CCompiler = '$(CDEBUG)';

debugFlag.CppCompiler = '$(CPPDEBUG)';

debugFlag.Linker = '$(LDDEBUG)';

debugFlag.Archiver = '$(ARDEBUG)';

cfg = tc.getBuildConfiguration('Faster Builds');

cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOffOpts));

cfg.setOption('C++ Compiler',horzcat(cppCompilerOpts,optimsOffOpts));

cfg.setOption('Linker',linkerOpts);

cfg.setOption('Shared Library Linker',sharedLinkerOpts);

cfg.setOption('Archiver',archiverOpts);

cfg = tc.getBuildConfiguration('Faster Runs');

cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOnOpts));

cfg.setOption('C++ Compiler',horzcat(cppCompilerOpts,optimsOnOpts));

cfg.setOption('Linker',linkerOpts);

cfg.setOption('Shared Library Linker',sharedLinkerOpts);

cfg.setOption('Archiver',archiverOpts);

cfg = tc.getBuildConfiguration('Debug');

cfg.setOption('C Compiler',horzcat(cCompilerOpts,optimsOffOpts,debugFlag.CCompiler));

cfg.setOption('C++ Compiler',horzcat(cppCompilerOpts,optimsOffOpts,debugFlag.CppCompiler));

20-16

Toolchain Definition File with Commentary

cfg.setOption('Linker',horzcat(linkerOpts,debugFlag.Linker));

cfg.setOption('Shared Library Linker',horzcat(sharedLinkerOpts,debugFlag.Linker));

cfg.setOption('Archiver',horzcat(archiverOpts,debugFlag.Archiver));

tc.setBuildConfigurationOption('all','Download','');

tc.setBuildConfigurationOption('all','Execute','');

tc.setBuildConfigurationOption('all','Make Tool','-f $(MAKEFILE)');

The preceding code:

• Creates each build configuration object.

• Sets the value of each option for a given build configuration object.

20-17

20 Custom Toolchain Registration

Create and Validate ToolchainInfo Object
This example shows how to create and validate a coder.make.ToolchainInfo
object from the toolchain definition file.

Before you create and validate a ToolchainInfo object, create and edit a
toolchain definition file, as described in “Create and Edit Toolchain Definition
File” on page 20-8.

1 Use the function defined by the toolchain definition file to create a
coder.make.ToolchainInfo object and assign the object to a handle. For
example, the MATLAB Command Window, enter:

tc = newtoolchn_tc

2 Use the coder.make.ToolchainInfo.validate method with the
coder.make.ToolchainInfo object. For example, enter:

tc.validate

If the coder.make.ToolchainInfo object contains errors, the validation
method displays error messages in the MATLAB Command Window.

3 Search the toolchain definition file for items named in the error message
(without quotes) and update the values.

4 Repeat the process of creating and validating the ToolchainInfo object
until there are no more errors.

Next, register the custom toolchain, as described in “Register the Custom
Toolchain” on page 20-19.

For more information, see “Troubleshooting Custom Toolchain Validation” on
page 20-23.

20-18

Register the Custom Toolchain

Register the Custom Toolchain
Before you register the custom toolchain, create and validate the
ToolchainInfo object, as described in “Create and Validate ToolchainInfo
Object” on page 20-18.

1 Use the save function to create a MATLAB-formatted binary file (MAT-file)
from the coder.make.ToolchainInfo object in the MATLAB workspace
variables. For example, enter:

save newtoolchn_tc tc

The new .mat file appears in the Current Folder.

2 Create a new MATLAB function called rtwTargetInfo.m.

3 Copy and paste the following text into rtwTargetInfo.m:

function rtwTargetInfo(tr)

%RTWTARGETINFO Target info callback

tr.registerTargetInfo(@loc_createToolchain);

end

% ---

% Create the ToolchainInfoRegistry entries

% ---

function config = loc_createToolchain

config(1) = coder.make.ToolchainInfoRegistry;

config(1).Name = '<mytoolchain v#.#> | <buildartifact (platform)>';

config(1).FileName = fullfile('<yourdir>','<mytoolchain_tc.mat>');

config(1).TargetHWDeviceType = {'<devicetype>'};

config(1).Platform = {'<win64>'};

% To register more custom toolchains:

% 1) Copy and paste the five preceding 'config' lines.

% 2) Increment the index of config().

% 3) Replace the values between angle brackets.

% 4) Remove the angle brackets.

20-19

20 Custom Toolchain Registration

end

4 Replace the items between angle brackets with real values, and remove the
angle brackets:

• Name — Provide a unique name for the toolchain definition file using
the recommended format: name, version number, build artifact, and
platform.

• FileName — The full path and name of the MAT-file.

• TargetHWDeviceType — The platform or platforms supported by the
custom toolchain.

• Platform — The host operating system supported by the custom
toolchain. For all platforms, use the following wildcard: '*'

For more information, refer to the corresponding ToolchainInfo properties
in “Properties”.

Here are some example entries for an Intel toolchain that uses nmake,
based on “Adding a Custom Toolchain”:

config(1) = coder.make.ToolchainInfoRegistry;

config(1).Name = 'Intel v12.1 | nmake makefile (64-bit Windows)';

config(1).FileName = fullfile(fileparts(mfilename('fullpath')),'intel_tc.mat');

config(1).TargetHWDeviceType = {'ARM9', 'ARM10','ARM11'};

config(1).Platform = {computer('arch')};

5 Save the new rtwTargetInfo.m file to a folder that is on the MATLAB path.

6 List all of the rtwTargetInfo.m files on the MATLAB path. Using the
MATLAB Command Window, enter:

which -all rtwTargetInfo

7 Verify that the rtwTargetInfo.m file you just created appears in the list
of files.

8 Reset TargetRegistry so it picks up the custom toolchain from the
rtwTargetInfo.m file:

RTW.TargetRegistry.getInstance('reset');

20-20

Register the Custom Toolchain

Next, use the custom toolchain, as described in “Use the Custom Toolchain”
on page 20-22.

20-21

20 Custom Toolchain Registration

Use the Custom Toolchain
You can use a custom toolchain when generating a static or dynamic library
or an executable. You cannot use one to generate MEX functions. To specify
which compiler to use for MEX-function generation, use mex -setup (see
“Setting Up the C/C++ Compiler”).

Before using the custom toolchain, register the custom toolchain, as described
in “Register the Custom Toolchain” on page 20-19.

1 Use coder.config to create a configuration object. For example:

cfg = coder.config('exe');

2 Get the value of config(end).Name from the rtwTargetInfo.m file. Then
assign that value to the cfg.Toolchain property:

cfg.Toolchain = 'mytoolchain v#.#' | 'buildartifact
(platform)'

With the “Adding a Custom Toolchain” example, this would look like:

cfg.Toolchain = 'Intel v12.1 | nmake makefile (64-bit Windows)';

3 Perform other steps required to generate code, as described in
“Deployment”. For example, specify the path and file name of the source
code:

cfg.CustomSource = 'filename_main.c';
cfg.CustomInclude = pwd;

4 When you generate code using the codegen function, specify the
configuration object that uses the custom toolchain. For example:

codegen -config cfg filename

You have completed the full workflow of creating and using a custom toolchain
described in “Custom Toolchain Registration” on page 20-2.

20-22

Troubleshooting Custom Toolchain Validation

Troubleshooting Custom Toolchain Validation

In this section...

“Build Tool Command Path Incorrect” on page 20-23

“Build Tool Not in System Path” on page 20-23

“Tool Path Does Not Exist” on page 20-24

“Unsupported Platform” on page 20-24

“Toolchain is Not installed” on page 20-25

“Project or Configuration is Using the Template Makefile” on page 20-25

“Skipped Validation of Build Tool “Download” or “Execute”” on page 20-26

Build Tool Command Path Incorrect
If the path or command file name are not correct, validation displays:

Cannot find file 'path+command'. The file does not exist.

Consider the following two lines from an example toolchain definition file:

tool.setCommand('abc');
tool.setPath('/toolchain/');

To correct this issue:

• Check that the build tool is installed.

• Review the arguments given for the tool.setCommand and tool.setPath
lines in toolchain definition file.

Build Tool Not in System Path
When the build tool’s path is not provided and the command file is not in
the system path, validation displays:

Cannot find 'command'. It is not in the system path.

Consider the following two lines from an example toolchain definition file:

20-23

20 Custom Toolchain Registration

tool.setCommand('icl');
tool.setPath('');

Because the argument for setPath() is '' instead of an absolute path, the
build tool must be on the system path.

To correct this issue:

• Use coder.make.ToolchainInfo.ShellSetup property to add the path to
the toolchain installation.

• Use your system setup to add the toolchain installation directory to system
environment path.

Otherwise, replace '' with the absolute path of the command file.

Tool Path Does Not Exist
If the path of the build tool path is provided, but does not exist, validation
displays:

Path 'toolpath' does not exist.

To correct this issue:

• Check the actual path of the build tool. Then, update the value of
coder.make.BuildTool.setPath in the toolchain definition file.

• Use your system setup to add the toolchain installation directory to system
environment path. Then, set the value of coder.make.BuildTool.setPath
to ''.

Unsupported Platform
If the toolchain is not supported on the host computer platform, validation
displays:

Toolchain 'tlchn' is supported on a 'pltfrma' platform. However,
you are running on a 'pltfrmb' platform.

To correct this issue:

20-24

Troubleshooting Custom Toolchain Validation

• Check the coder.make.ToolchainInfo.Platform property in your
toolchain definition file for errors.

• Update or replace the toolchain definition file with one that supports your
host computer platform.

• Change host computer platforms.

Toolchain is Not installed
If the toolchain is not installed, validation displays:

Toolchain is not installed.

To correct this issue, install the expected toolchain, or verify that you selected
the correct toolchain, as described in “Use the Custom Toolchain” on page
20-22.

Project or Configuration is Using the Template
Makefile
By default, MATLAB Coder tries to use the selected build toolchain to build
the generated code. However, if the makefile configuration options detailed
in the following sections are not set to their default value, MATLAB Coder
cannot use the toolchain and reverts to using the template makefile approach
for building the generated code.

MATLAB Coder Project Settings

Project Settings Dialog Box All
Settings Parameter Name

Default Setting

Generate makefile Yes

Make command make_rtw

Template makefile default_tmf

Compiler optimization level Off

20-25

20 Custom Toolchain Registration

Command-line Configuration Parameters for the codegen function

coder.CodeConfig or
coder.EmbeddedCodeConfig
Parameter Name

Default Value

GenerateMakefile 'true'

MakeCommand 'make_rtw'

TemplateMakefile 'default_tmf'

CCompilerOptimization 'Off'

To use the toolchain approach, reset your configuration options to these
default values manually or:

• To reset settings for project project_name, at the MATLAB command
line, enter:

coder.make.upgradeMATLABCoderProject(project_name)

• To reset command-line settings for configuration object config, create an
updated configuration object new_config and then use new_config with
the codegen function in subsequent builds. At the MATLAB command
line, enter:

new_config = coder.make.upgradeCoderConfigObject(config);

Skipped Validation of Build Tool “Download” or
“Execute”
Even though the Validation Report states “Toolchain Validation Result:
Passed” it includes one or both of the following notes:

Validation of build tool "Download"
Skipped. No "Download" build tool is specified.
Validation of build tool "Execute"
Skipped. "Execute" build tool "$(PRODUCT)" cannot be validated.

To correct this issue, update the toolchain definition file and re-register the
updated toolchain. For more information, see:

20-26

Troubleshooting Custom Toolchain Validation

• “Create and Edit Toolchain Definition File” on page 20-8

• “Create and Validate ToolchainInfo Object” on page 20-18

• “Register the Custom Toolchain” on page 20-19

20-27

20 Custom Toolchain Registration

20-28

21

Deploying Generated Code

• “Call a C Static Library Function from C Code” on page 21-2

• “Call a C/C++ Static Library Function from MATLAB Code” on page 21-4

• “Call Generated C/C++ Functions” on page 21-6

• “Use a MATLAB® Coder™ Dynamic Library in a Simple Microsoft® Visual
Studio® Project” on page 21-9

• “Specify External File Locations” on page 21-12

21 Deploying Generated Code

Call a C Static Library Function from C Code
This example shows how to call a generated C library function from C code. It
uses the C static library function absval described in “Call a C/C++ Static
Library Function from MATLAB Code” on page 21-4.

1 Write a main function in C that does the following:

• Includes the generated header file, which contains the function
prototypes for the library function.

• Calls the initialize function before calling the library function for the
first time.

• Calls the terminate function after calling the library function for the
last time.

Here is an example of a C main function that calls the library function
absval:

/*
** main.c
*/
#include <stdio.h>
#include <stdlib.h>
#include "absval.h"

int main(int argc, char *argv[])
{

absval_initialize();

printf("absval(-2.75)=%g\n", absval(-2.75));

absval_terminate();

return 0;
}

2 Configure your target to integrate this custom C main function with your
generated code, as described in “Specify External File Locations” on page
21-12.

21-2

Call a C Static Library Function from C Code

For example, you can define a configuration object that points to the
custom C code:

a Create a configuration object. At the MATLAB prompt, enter:

cfg = coder.config('exe');

b Set custom code properties on the configuration object, as in these
example commands:

cfg.CustomSource = 'main.c';
cfg.CustomInclude = 'c:\myfiles';

3 Generate the C executable. Use the -args option to specify that the input
is a real, scalar double. At the MATLAB prompt, enter:

codegen -config cfg absval -args {0}

4 Call the executable. For example:

absval(-2.75)

21-3

21 Deploying Generated Code

Call a C/C++ Static Library Function from MATLAB Code
This example shows how to call a C/C++ library function from MATLAB code
that is suitable for code generation.

Suppose you have a MATLAB file absval.m that contains the following
function:

function y = absval(u) %#codegen
y = abs(u);

end

To generate a C static library function and call it from MATLAB code:

1 Generate the C library for absval.m.

codegen -config:lib absval -args {0.0}

Here are key points about this command:

• The -config:lib option instructs MATLAB Coder to generate absval
as a C static library function.

The default target language is C. To change the target language to C++,
see “Specify a Language for Code Generation” on page 19-24.

• MATLAB Coder creates the library absval.lib (or absval.a
on Linus Torvalds’ Linux) and header file absval.h in the
folder /emcprj/rtwlib/absval. It also generates the functions
absval_initialize and absval_terminate in the C library.

• The -args option specifies the class, size, and complexity of the primary
function input u by example, as described in “Define Input Properties by
Example at the Command Line” on page 19-46.

2 Write a MATLAB function to call the generated library:

%#codegen
function y = callabsval

% Call the initialize function before
% calling the C function for the first time
coder.ceval('absval_initialize');

21-4

Call a C/C++ Static Library Function from MATLAB® Code

y = -2.75;
y = coder.ceval('absval',y);

% Call the terminate function after
% calling the C function for the last time
coder.ceval('absval_terminate');

The MATLAB function callabsval uses the interface coder.ceval
to call the generated C functions absval_initialize, absval, and
absval_terminate. You must use this function to call C functions
from generated code. For more information, see “Call Generated C/C++
Functions” on page 21-6.

3 Convert the code in callabsval.m to a MEX function so that you can call
the C library function absval directly from the MATLAB prompt.

a Generate the MEX function using codegen as follows:

• Create a code generation configuration object for a MEX function:

cfg = coder.config

• On Microsoft Windows platforms, use this command:

codegen -config cfg callabsval codegen/lib/absval/absval.lib
codegen/lib/absval/absval.h

By default, this command creates, in the current folder, a MEX
function named callabsval_mex

On the Linus Torvalds’ Linux platform, use this command:

codegen -config cfg callabsval codegen/lib/absval/absval.a
codegen/lib/absval/absval.h

b At the MATLAB prompt, call the C library by running the MEX function.
For example, on Windows:

callabsval_mex

21-5

21 Deploying Generated Code

Call Generated C/C++ Functions

In this section...

“Conventions for Calling Functions in Generated Code” on page 21-6

“How to Call C/C++ Functions from MATLAB Code” on page 21-6

“Calling Initialize and Terminate Functions” on page 21-7

“Calling C/C++ Functions with Multiple Outputs” on page 21-8

“Calling C/C++ Functions that Return Arrays” on page 21-8

Conventions for Calling Functions in Generated Code
When generating code, MATLAB Coder uses the following calling conventions:

• Passes arrays by reference as inputs.

• Returns arrays by reference as outputs.

• Unless you optimize your code by using the same variable as both input
and output, passes scalars by value as inputs. In that case, MATLAB Coder
passes the scalar by reference.

• Returns scalars by value for single-output functions.

• Returns scalars by reference:

- For functions with multiple outputs.

- When you use the same variable as both input and output.

For more information about optimizing your code by using the same variable
as both input and output, see “Eliminate Redundant Copies of Function
Inputs” on page 25-7.

How to Call C/C++ Functions from MATLAB Code
You can call the C/C++ functions generated for libraries as custom C/C++ code
from MATLAB functions that are suitable for code generation. For static
libraries, you must use the coder.ceval function to wrap the function calls,
as in this example:

21-6

Call Generated C/C++ Functions

function y = callmyCFunction %#codegen
y = 1.5;
y = coder.ceval('myCFunction',y);

end

Here, the MATLAB function callmyCFunction calls the custom C function
myCFunction, which takes one input argument.

For dynamically-linked libraries, you can also use coder.ceval.

There are additional requirements for calling C/C++ functions from the
MATLAB code in the following situations:

• You want to call generated C/C++ libraries or executables from a MATLAB
function. Call housekeeping functions generated by MATLAB Coder, as
described in “Calling Initialize and Terminate Functions” on page 21-7.

• You want to call C/C++ functions that are generated from MATLAB
functions that have more than one output, as described in “Calling C/C++
Functions with Multiple Outputs” on page 21-8.

• You want to call C/C++ functions that are generated from MATLAB
functions that return arrays, as described in “Calling C/C++ Functions
that Return Arrays” on page 21-8.

Calling Initialize and Terminate Functions
When you convert a MATLAB function to a C/C++ library function or a C/C++
executable, MATLAB Coder automatically generates two housekeeping
functions that you must call along with the C/C++ function.

Housekeeping Function When to Call

primary_function_name_initialize Before you call your C/C++
executable or library function
for the first time

primary_function_name_terminate After you call your C/C++
executable or library function
for the last time

21-7

21 Deploying Generated Code

From C/C++ code, you can call these functions directly. However, to call them
from MATLAB code that is suitable for code generation, you must use the
coder.ceval function. coder.ceval is a MATLAB Coder function, but is not
supported by the native MATLAB language. Therefore, if your MATLAB code
uses this function, use coder.target to disable these calls in MATLAB and
replace them with equivalent functions.

Calling C/C++ Functions with Multiple Outputs
Although MATLAB Coder can generate C/C++ code from MATLAB functions
that have multiple outputs, the generated C/C++ code cannot return multiple
outputs directly because the C/C++ language does not support multiple return
values. Instead, you can achieve the effect of returning multiple outputs from
your C/C++ function by using coder.wref with coder.ceval.

See Also

• “Call Generated C/C++ Functions” on page 21-6

• coder.wref function reference information

• coder.ceval function reference information

Calling C/C++ Functions that Return Arrays
Although MATLAB Coder can generate C/C++ code from MATLAB functions
that return values as arrays, the generated code cannot return arrays by
value because the C/C++ language is limited to returning single, scalar
values. Instead, you can return arrays from your C/C++ function by reference
as pointers by using coder.wref with coder.ceval.

See Also

• “Call Generated C/C++ Functions” on page 21-6

• coder.wref function reference information

• coder.ceval function reference information

21-8

Use a MATLAB® Coder™ Dynamic Library in a Simple Microsoft® Visual Studio® Project

Use a MATLAB Coder Dynamic Library in a Simple
Microsoft Visual Studio Project

These steps outline how to create and configure a simple Microsoft Visual
Studio® Win32 Console Application project to call a dynamic library (DLL)
that was generated by MATLAB Coder. This procedure provides information
on how to do this in Microsoft Visual Studio 2008, the steps might differ in
other versions of Microsoft Visual Studio.

1 Create a MATLAB function foo and save it as foo.m in a local writable
folder, for example, c:\dll_test.

function c = foo(a) %#codegen
c = sqrt(a);

end

2 Generate a DLL for the MATLAB function foo, using the -args option to
specify that the input a is a real double.

codegen -report -config:dll foo -args {0}

On Microsoft Windows systems, codegen generates a C dynamic library,
foo.dll, and supporting files, in the default folder, codegen/dll/foo.

3 In Microsoft Visual Studio, create an empty Win32 Console Application
project.

4 Verify that the project configuration specifies architecture that matches
your computer. By default, MATLAB Coder builds a DLL for the platform
that you are working on, but Microsoft Visual Studio builds for Win32.

In Microsoft Visual Studio 2008:

a Select Build > Configuration Manager.

b In the Configuration Manager, set Active solution platform to
match your platform.

5 Configure the project to use the release version of the C run-time library.
By default, the Microsoft Visual Studio project uses the debug version of
the C run-time library, but the DLL generated by MATLAB Coder uses the
release version. For example, in Microsoft Visual Studio 2008:

21-9

21 Deploying Generated Code

a Select Build > Configuration Manager.

b In the Configuration Manager, set Active solution configuration
to Release.

6 Create a main file that calls foo.dll. The main function must:

• Include the generated header file, which contains the function prototypes
for the library function.

• Call the initialize function before calling the library function for the
first time.

• Call the terminate function after calling the library function for the
last time.

For example:

#include "foo.h"
#include "foo_initialize.h"
#include "foo_terminate.h"
#include <stdio.h>

int main()
{

foo_initialize();
printf("%f\n", foo(25));
foo_terminate();
getchar();
return 0;

}

7 Add the main file to the project.

8 In the project, add the folder containing the generated header file to the
list of additional include directories. For example, in Microsoft Visual
Studio 2008:

a Right-click the project name and select Properties.

b Under C/C++ > General, add the folder c:\dll_test\codegen\dll\foo
to Additional Include Directories.

21-10

Use a MATLAB® Coder™ Dynamic Library in a Simple Microsoft® Visual Studio® Project

9 Add the folder containing the .lib file (by default, this is the folder
containing the .dll) to the list of additional library directories. For
example, in Microsoft Visual Studio 2008:

a Right-click the project name and select Properties.

b Under Linker > General, add the folder
c:\dll_test\codegen\dll\foo to Additional Library Directories.

10 Add the .lib file name to the list of additional libraries. For example, in
Microsoft Visual Studio 2008:

a Right-click the project name and select Properties.

b Under Linker > Input, add foo.lib to Additional Dependencies.

You are now ready to build your project.

Note To run the application, you must either add the folder containing
the generated DLL to your path or run from the folder that contains
the DLL.

21-11

21 Deploying Generated Code

Specify External File Locations

In this section...

“External File Locations for External Code Integration” on page 21-12

“Specify External Files in a Class Derived from coder.ExternalDependency”
on page 21-13

“Specify External Files in MATLAB Code Using coder.updateBuildInfo” on
page 21-13

“Specify External Files in the Project Settings Dialog Box” on page 21-13

“Specify External Files at the Command Line” on page 21-14

“Specify External Files with Configuration Objects” on page 21-14

External File Locations for External Code Integration
To integrate external code with generated C/C++ code, you must specify the
locations of your external source files, header files, and libraries to MATLAB
Coder.

You can specify the file locations:

• In a class definition file, when you derive a class from
coder.ExternalDependency

• In your MATLAB code using the coder.updateBuildInfo function

• In the project settings dialog box

• From the command line

• In the configuration object

21-12

Specify External File Locations

Specify External Files in a Class Derived from
coder.ExternalDependency
When you derive a class from coder.ExternalDependency, you write a
method updateBuildInfo that specifies the locations of the external files
required for the build. See coder.ExternalDependency.

Specify External Files in MATLAB Code Using
coder.updateBuildInfo
In your MATLAB code, you can call coder.updateBuildInfo to specify the
locations of external files. See coder.updateBuildInfo.

Specify External Files in the Project Settings Dialog
Box

1 On the project Build tab, click the More settings link to open the Project
Settings dialog box.

2 On the Custom Code tab, under Custom C-code to include in
generated files, specify Source file and Header file. Source file
specifies that the code appear at the top of generated C/C++ source files.
Header file specifies that the code appear at the top of generated header
files.

Custom Code Property Description

Under Additional files and directories to be built, provide an absolute path or a path
relative to the project folder.

Include directories Specifies a list of folders that contain custom header, source,
object, or library files. Separate list items with a semicolon.

Source files Specifies additional custom C/C++ files to be compiled with the
MATLAB file. Separate list items with a semicolon.

Libraries Specifies the names of object or library files to be linked with
the generated code. Separate list items with a semicolon.

Under Custom C-code to include in generated files

21-13

21 Deploying Generated Code

Custom Code Property Description

Source file Specifies code to appear at the top of generated C/C++ source
files.

Header file Specifies custom code to appear at the top of generated header
files

Specify External Files at the Command Line
When you compile MATLAB function with MATLAB Coder, you can specify
custom C/C++ files — such as source, header, and library files — on the
command line along with your MATLAB file. For example, suppose you
want to generate an embeddable C code executable that integrates a custom
C function myCfcn with a MATLAB function myMfcn that has no input
parameters. The custom source and header files for myCfcn reside in the
folder C:\custom. You can use the following command to generate the code:

codegen C:\custom\myCfcn.c C:\custom\myCfcn.h myMfcn

Specify External Files with Configuration Objects
You can specify custom C/C++ files by setting custom code properties on
configuration objects.

1 Define a configuration object, as described in “Creating Configuration
Objects” on page 19-33.

For example:

cc = coder.config('lib');

2 Set one or more of the custom code properties.

21-14

Specify External File Locations

Custom Code Property Description

CustomInclude Specifies a list of folders that contain custom header, source,
object, or library files.

Note If your folder path name contains spaces, you must
enclose it in double quotes:

cc.CustomInclude = '"C:\Program Files\MATLAB\work"'

CustomSource Specifies additional custom C/C++ files to be compiled with
the MATLAB file.

CustomLibrary Specifies the names of object or library files to be linked with
the generated code.

CustomSourceCode Specifies code to insert at the top of each generated C/C++
source file.

CustomHeaderCode Specifies custom code to insert at the top of each generated
C/C++ header file.

For example:

cc.CustomInclude = 'C:\custom\src C:\custom\lib';
cc.CustomSource = 'cfunction.c';
cc.CustomLibrary = 'chelper.obj clibrary.lib';
cc.CustomSourceCode = '#include "cgfunction.h"';

3 Compile the MATLAB code specifying the code generation configuration
object.

Note If you generate code for a function that has input parameters, you
must specify the inputs. “Primary Function Input Specification” on page
19-40

codegen -config cc myFunc

21-15

21 Deploying Generated Code

4 Call custom C/C++ functions.

From... Call...

C/C++ source code Custom C/C++ functions directly

MATLAB code, compiled on the
MATLAB Coder path

Custom C/C++ functions using
coder.ceval.

For example, from MATLAB code:

...
y = 2.5;
y = coder.ceval('myFunc',y);
...

21-16

22

Accelerating MATLAB
Algorithms

• “Workflow for Accelerating MATLAB Algorithms” on page 22-2

• “Best Practices for Using MEX Functions to Accelerate MATLAB
Algorithms” on page 22-4

• “Edge Detection on Images” on page 22-8

• “Accelerate MATLAB Algorithms” on page 22-15

• “Modifying MATLAB Code for Acceleration” on page 22-16

• “Control Run-Time Checks” on page 22-17

• “Algorithm Acceleration Using Parallel for-loops (parfor)” on page 22-20

• “Control Compilation of parfor-loops” on page 22-27

• “Reduction Assignments in parfor-loops” on page 22-28

• “Classification of Variables in parfor-loops” on page 22-29

• “Accelerate MATLAB Algorithms That Use Parallel for-loops (parfor)” on
page 22-40

• “Specify Maximum Number of Threads in parfor-loops” on page 22-41

• “Troubleshooting parfor-loops” on page 22-42

• “Accelerating Simulation of Bouncing Balls” on page 22-43

22 Accelerating MATLAB® Algorithms

Workflow for Accelerating MATLAB Algorithms

22-2

Workflow for Accelerating MATLAB® Algorithms

See Also

• “MATLAB® Coder™ Project Set Up Workflow” on page 16-2

• “Workflow for Preparing MATLAB Code for Code Generation” on page 17-2

• “Workflow for Testing MEX Functions in MATLAB” on page 18-2

• “Modifying MATLAB Code for Acceleration” on page 22-16

22-3

22 Accelerating MATLAB® Algorithms

Best Practices for Using MEX Functions to Accelerate
MATLAB Algorithms

In this section...

“Accelerate Code That Dominates Execution Time” on page 22-4

“Include Loops Inside MEX Function” on page 22-5

“Avoid Generating MEX Functions from Unsupported Functions” on page
22-5

“Avoid Generating MEX Functions if Built-In MATLAB Functions
Dominate Run Time” on page 22-6

“Minimize MEX Function Calls” on page 22-6

When you choose a section of MATLAB code to accelerate, the following
practices are recommended.

Accelerate Code That Dominates Execution Time
Find the section of MATLAB code that dominates run time. Accelerate this
section of the code using a MEX function as follows:

1 Place this section of the code inside a separate MATLAB function.

2 From this MATLAB function, generate a MEX function.

3 From your original MATLAB code, call the MEX function.

To find the execution time of each MATLAB instruction, use MATLAB
Profiler.

• To open the Profiler from the command line, type profile viewer.

• To open Profiler from the MATLAB Editor window, under the Editor
tab, click Run and Time.

For more information about using the Profiler to measure run time of a
MATLAB code, see “Running the Profiler”.

22-4

Best Practices for Using MEX Functions to Accelerate MATLAB® Algorithms

Include Loops Inside MEX Function
Instead of calling a MEX function inside a loop in the MATLAB code, include
the loop inside the MEX function. Including the loop eliminates the overheads
in calling the MEX function for every run of the loop.

For example, the following code finds the greatest element in every row of
a 1000–by–1000 matrix, mat. You can accelerate sections 1,2, and 3 using
a MEX function.:

% Section 1 begins
for i = 1:10000

% Section 2 begins
max = mat(i,0); % Initialize max
for j = 1:10000

% Section 3 begins
if (mat(i,j) > max)

max = mat(i,j) % Store the current maximum
end
% Section 3 ends

end
% Section 2 ends

end
% Section 1 ends

Accelerate section 1 using a MEX function. Accelerate section 1 first so that
the MEX function is called only once.. If you cannot accelerate section 1 first,
then accelerate sections 2 or 3, in that order. If section 2 (or 3) is accelerated
using a MEX function, the function is called 10000 (or 10000 × 10000) times.

Avoid Generating MEX Functions from Unsupported
Functions
Check that the section of MATLAB code that you accelerate does not contain
many functions and language features that are unsupported by MATLAB
Coder. For a list of supported functions, see “Functions Supported for C/C++
Code Generation — Alphabetical List” on page 4-2.

22-5

22 Accelerating MATLAB® Algorithms

Note In certain situations, you might have to accelerate sections of code even
though they contain a few unsupported functions. Declare an unsupported
function as extrinsic to invoke the original MATLAB function instead of the
code generated for the function. You can declare a function as extrinsic by
using coder.extrinsic or wrapping it in an feval statement. See “Call
MATLAB Functions” on page 13-11.

Avoid Generating MEX Functions if Built-In MATLAB
Functions Dominate Run Time
Use MEX functions to accelerate MATLAB code only if user-generated code
dominates the run time.

Avoid generating MEX functions if computationally intensive, built-in
MATLAB functions dominate the run time. These functions are pre-compiled
and optimized, so the MATLAB code is not accelerated significantly using a
MEX function. Examples of such functions include svd, eig ,fft, qr, lu.

Tip You can invoke computationally intensive, built-in MATLAB functions
from your MEX function. Declare the MATLAB function as extrinsic using
coder.extrinsic or wrap it in an feval statement. For more information,
see “Call MATLAB Functions” on page 13-11.

Minimize MEX Function Calls
Accelerate as much of the MATLAB code as possible using one MEX function
instead of several MEX functions called at lower levels. This minimizes the
overheads in calling the MEX functions.

For example, consider the function,testfunc,which calls two
functions,testfunc_1 and testfunc_2:

function [y1,y2] = testfunc(x1,x2)
y1 = testfunc_1(x1,x2);
y2 = testfunc_2(x1,x2);

end

22-6

Best Practices for Using MEX Functions to Accelerate MATLAB® Algorithms

Instead of generating MEX functions individually for testfunc_1 and
testfunc_2, and then calling the MEX functions in testfunc, generate a
MEX function for testfunc itself.

22-7

22 Accelerating MATLAB® Algorithms

Edge Detection on Images
This example shows how to generate a standalone C library from MATLAB
code that implements a simple Sobel filter that performs edge detection on
images. The example also shows how to generate and test a MEX function
in MATLAB prior to generating C code to verify that the MATLAB code is
suitable for code generation.

Prerequisites

To run this example, you must install a C compiler and set it up using the ’mex
-setup’ command. For more information, see Setting Up Your C Compiler.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd).
The new folder will only contain the files that are relevant for this example. If
you do not want to affect the current folder (or if you cannot generate files in
this folder), you should change your working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_edge_detection');

About the ’sobel’ Function

The sobel.m function takes an image (represented as a double matrix) and
a threshold value and returns an image with the edges detected (based on
the threshold value).

type sobel

% edgeImage = sobel(originalImage, threshold)
% Sobel edge detection. Given a normalized image (with double values)
% return an image where the edges are detected w.r.t. threshold value.
function edgeImage = sobel(originalImage, threshold) %#codegen
assert(all(size(originalImage) <= [1024 1024]));
assert(isa(originalImage, 'double'));
assert(isa(threshold, 'double'));

22-8

Edge Detection on Images

k = [1 2 1; 0 0 0; -1 -2 -1];
H = conv2(double(originalImage),k, 'same');
V = conv2(double(originalImage),k','same');
E = sqrt(H.*H + V.*V);
edgeImage = uint8((E > threshold) * 255);

Generate the MEX Function

Generate a MEX function using the ’codegen’ command.

codegen sobel

Before generating C code, you should first test the MEX function in MATLAB
to ensure that it is functionally equivalent to the original MATLAB code and
that no run-time errors occur. By default, ’codegen’ generates a MEX function
named ’sobel_mex’ in the current folder. This allows you to test the MATLAB
code and MEX function and compare the results.

Read in the Original Image

Use the standard ’imread’ command.

im = imread('hello.jpg');
image(im);

22-9

22 Accelerating MATLAB® Algorithms

Convert Image to a Grayscale Version

Convert the color image (shown above) to an equivalent grayscale image with
normalized values (0.0 for black, 1.0 for white).

gray = (0.2989 * double(im(:,:,1)) + 0.5870 * double(im(:,:,2)) + 0.1140 *

Run the MEX Function (The Sobel Filter)

Pass the normalized image and a threshold value.

22-10

Edge Detection on Images

edgeIm = sobel_mex(gray, 0.7);

Display the Result

im3 = repmat(edgeIm, [1 1 3]);
image(im3);

Generate Standalone C Code

codegen -config coder.config('lib') sobel

22-11

22 Accelerating MATLAB® Algorithms

Using ’codegen’ with the ’-config coder.config(’lib’)’ option produces a
standalone C library. By default, the code generated for the library is in the
folder codegen/lib/sobel/

Inspect the Generated Function

type codegen/lib/sobel/sobel.c

/*
* sobel.c
*
* Code generation for function 'sobel'
*
* C source code generated on: Fri Aug 09 01:25:43 2013
*
*/

/* Include files */
#include "rt_nonfinite.h"
#include "sobel.h"
#include "sobel_emxutil.h"
#include "sqrt.h"
#include "conv2.h"

/* Function Declarations */
static double rt_roundd_snf(double u);

/* Function Definitions */
static double rt_roundd_snf(double u)
{

double y;
if (fabs(u) < 4.503599627370496E+15) {

if (u >= 0.5) {
y = floor(u + 0.5);

} else if (u > -0.5) {
y = u * 0.0;

} else {
y = ceil(u - 0.5);

}

22-12

Edge Detection on Images

} else {
y = u;

}

return y;
}

void sobel(const emxArray_real_T *originalImage, double threshold,
emxArray_uint8_T *edgeImage)

{
emxArray_real_T *H;
emxArray_real_T *V;
int b_H;
int c_H;
emxInit_real_T(&H, 2);
emxInit_real_T(&V, 2);

/* edgeImage = sobel(originalImage, threshold) */
/* Sobel edge detection. Given a normalized image (with double values) *
/* return an image where the edges are detected w.r.t. threshold value.
conv2(originalImage, H);
b_conv2(originalImage, V);
b_H = H->size[0] * H->size[1];
emxEnsureCapacity((emxArray__common *)H, b_H, (int)sizeof(double));
b_H = H->size[0];
c_H = H->size[1];
c_H *= b_H;
for (b_H = 0; b_H < c_H; b_H++) {

H->data[b_H] = H->data[b_H] * H->data[b_H] + V->data[b_H] * V->data[b_H
}

emxFree_real_T(&V);
b_sqrt(H);
b_H = edgeImage->size[0] * edgeImage->size[1];
edgeImage->size[0] = H->size[0];
edgeImage->size[1] = H->size[1];
emxEnsureCapacity((emxArray__common *)edgeImage, b_H, (int)sizeof(unsigne

char));
c_H = H->size[0] * H->size[1];
for (b_H = 0; b_H < c_H; b_H++) {

22-13

22 Accelerating MATLAB® Algorithms

edgeImage->data[b_H] = (unsigned char)rt_roundd_snf((double)(H->data[b_
threshold) * 255.0);

}

emxFree_real_T(&H);
}

/* End of code generation (sobel.c) */

Cleanup

Remove files and return to original folder

Run Command: Cleanup

cleanup

22-14

Accelerate MATLAB® Algorithms

Accelerate MATLAB Algorithms
For many applications, you can generate MEX functions to accelerate
MATLAB algorithms. If you have a Fixed-Point Designer license, you can
generate MEX functions to accelerate fixed-point MATLAB algorithms. After
generating a MEX function, test it in MATLAB to verify that its operation is
functionally equivalent to the original MATLAB algorithm. Then compare the
speed of execution of the MEX function with that of the MATLAB algorithm.
If the MEX function speed is not sufficiently fast, you might improve it using
one of the following methods:

• Choosing a different C/C++ compiler.

It is important that you use a C/C++ compiler that is designed to generate
high performance code.

Note The default MATLAB compiler for Windows 32–bit platforms, lcc,
is designed to generate code quickly. It is not designed to generate high
performance code.

• “Modifying MATLAB Code for Acceleration” on page 22-16

• “Control Run-Time Checks” on page 22-17

22-15

22 Accelerating MATLAB® Algorithms

Modifying MATLAB Code for Acceleration

How to Modify Your MATLAB Code for Acceleration
You might improve the efficiency of the generated code using one of the
following optimizations:

• “Unroll for-Loops” on page 25-41

• “Inline Code” on page 25-9

• “Eliminate Redundant Copies of Function Inputs” on page 25-7

22-16

Control Run-Time Checks

Control Run-Time Checks

In this section...

“Types of Run-Time Checks” on page 22-17

“When to Disable Run-Time Checks” on page 22-18

“How to Disable Run-Time Checks” on page 22-18

Types of Run-Time Checks
The code generated for your MATLAB functions includes the following
run-time checks and external calls to MATLAB functions.

• Memory integrity checks

These checks detect violations of memory integrity in code generated for
MATLAB functions and stop execution with a diagnostic message.

Caution These checks are enabled by default. Without memory integrity
checks, violations result in unpredictable behavior.

• Responsiveness checks in code generated for MATLAB functions

These checks enable periodic checks for Ctrl+C breaks in code generated
for MATLAB functions. Enabling responsiveness checks also enables
graphics refreshing.

Caution These checks are enabled by default. Without these checks, the
only way to end a long-running execution might be to terminate MATLAB.

• Extrinsic calls to MATLAB functions

Extrinsic calls to MATLAB functions, for example to display results,
are enabled by default for debugging purposes. For more information
about extrinsic functions, see “Declaring MATLAB Functions as Extrinsic
Functions” on page 13-12.

22-17

22 Accelerating MATLAB® Algorithms

When to Disable Run-Time Checks
Generally, generating code with run-time checks enabled results in more
generated code and slower MEX function execution than generating code
with the checks disabled. Similarly, extrinsic calls are time consuming and
increase memory usage and execution time. Disabling run-time checks and
extrinsic calls usually results in streamlined generated code and faster MEX
function execution. The following table lists issues to consider when disabling
run-time checks and extrinsic calls.

Consider disabling... Only if...

Memory integrity checks You have already verified that array
bounds and dimension checking is
unnecessary.

Responsiveness checks You are sure that you will not need
to stop execution of your application
using Ctrl+C.

Extrinsic calls You are using extrinsic calls only
for functions that do not affect
application results.

How to Disable Run-Time Checks
You can disable run-time checks explicitly from the project settings dialog
box, the command line, or a MEX configuration dialog box.

Disabling Run-Time Checks in the Project Settings Dialog Box

1 On the MATLAB Coder project Build tab, click More settings.

2 On the Project Settings dialog box Speed tab, clear Ensure memory
integrity, Enable responsiveness to CTRL+C and graphics
refreshing or Extrinsic calls, as applicable.

22-18

Control Run-Time Checks

Disabling Run-Time Checks From the Command Line

1 In the MATLAB workspace, define the MEX configuration object:

mexcfg = coder.config('mex');

2 At the command line, set the IntegrityChecks, ExtrinsicCalls, or
ResponsivenessChecks properties to false, as applicable:

mexcfg.IntegrityChecks = false;
mexcfg.ExtrinsicCalls = false;
mexcfg.ResponsivenessChecks = false;

22-19

22 Accelerating MATLAB® Algorithms

Algorithm Acceleration Using Parallel for-loops (parfor)

In this section...

“Parallel for-loops (parfor) in Generated Code” on page 22-20

“How parfor-loops Improve Execution Speed” on page 22-21

“When to Use parfor-loops” on page 22-21

“When Not to Use parfor-loops” on page 22-22

“parfor-loop Syntax” on page 22-22

“parfor Restrictions” on page 22-23

Parallel for-loops (parfor) in Generated Code
To potentially accelerate execution, you can generate MEX functions or C/C++
code from MATLAB code that contains parallel for-loops (parfor-loops).

A parfor-loop, like the standard MATLAB for-loop, executes a series of
statements (the loop body) over a range of values. Unlike the for-loop,
however, the iterations of the parfor-loop can run in parallel on multiple
cores on the target hardware.

Running the iterations in parallel might significantly improve execution
speed of the generated code. For more information, see “How parfor-loops
Improve Execution Speed” on page 22-21.

Note The parallel execution occurs only in generated MEX functions or
C/C++ code; not the original MATLAB code. To accelerate your MATLAB
code, generate a MEX function from the parfor-loop. Then, call the MEX
function from your code. For more information, see “Workflow for Accelerating
MATLAB Algorithms” on page 22-2.

MATLAB Coder software uses the Open Multi-Processing (OpenMP)
application interface to support shared-memory, multicore code generation.
If you want distributed parallelism, use the Parallel Computing Toolbox™
product. By default, MATLAB Coder uses up to as many cores as it finds

22-20

Algorithm Acceleration Using Parallel for-loops (parfor)

available. If you specify the number of threads to use, MATLAB Coder uses
at most that number of cores for the threads, even if additional cores are
available. For more information, see parfor.

Because the loop body can execute in parallel on multiple threads, it must
conform to certain restrictions. If MATLAB Coder software detects loops
that do not conform to parfor specifications, it produces an error. For more
information, see “parfor Restrictions” on page 22-23.

How parfor-loops Improve Execution Speed
A parfor-loop might provide better execution speed than its analogous
for-loop because several threads can compute concurrently on the same loop.

Each execution of the body of a parfor-loop is called an iteration. The threads
evaluate iterations in arbitrary order and independently of each other.
Because each iteration is independent, they do not have to be synchronized. If
the number of threads is equal to the number of loop iterations, each thread
performs one iteration of the loop. If there are more iterations than threads,
some threads perform more than one loop iteration.

For example, when a loop of 100 iterations runs on 20 threads, each thread
executes five iterations of the loop simultaneously. If your loop takes a long
time to run because of the large number of iterations or individual iterations
being lengthy, you can reduce the run time significantly using multiple
threads. In this example, you might not, however, get 20 times improvement
in speed because of parallelization overheads, such as thread creation and
deletion.

When to Use parfor-loops
Use parfor when you have:

• Many iterations of a simple calculation. parfor divides the loop iterations
into groups so that each thread executes one group of iterations.

• A loop iteration that takes a long time to execute. parfor executes the
iterations simultaneously on different threads. Although this simultaneous
execution does not reduce the time spent on an individual iteration, it
might significantly reduce overall time spent on the loop.

22-21

22 Accelerating MATLAB® Algorithms

When Not to Use parfor-loops
Do not use parfor when:

• An iteration of your loop depends on other iterations. Running the
iterations in parallel can lead to erroneous results.

To help you avoid using parfor when an iteration of your loop depends on
other iterations, MATLAB Coder specifies a rigid classification of variables.
For more information, see “Classification of Variables in parfor-loops” on
page 22-29. If MATLAB Coder detects loops that do not conform to the
parfor specifications, it does not generate code and produces an error.

Reductions are an exception to the rule that loop iterations must be
independent. A reduction variable accumulates a value that depends on all
the iterations together, but is independent of the iteration order. For more
information, see “Reduction Variables” on page 22-32.

• There are only a few iterations that perform some simple calculations.

Note For small number of loop iterations, you might not accelerate
execution due to parallelization overheads. Such overheads include time
taken for thread creation, data synchronization between threads and
thread deletion.

parfor-loop Syntax

• For a parfor-loop, use this syntax:

parfor i = InitVal:EndVal
parfor (i = InitVal:EndVal)

• To specify the maximum number of threads, use this syntax:

parfor (i = InitVal:EndVal,NumThreads)

For more information, see parfor.

22-22

Algorithm Acceleration Using Parallel for-loops (parfor)

parfor Restrictions

• The parfor loop does not support the syntax:

parfor (i=InitVal:EndVal:Step)
parfor i=Initval:Endval:Step

• You cannot generate MEX functions or C/C++ code for MATLAB code that
contains parfor-loops using the following compilers:

- Microsoft Visual Studio SDK

- Open Watcom

- LCC

- Apple Xcode with Clang
If you use one of these compilers, MATLAB Coder treats the parfor-loops
as for-loops. In the generated MEX function or C/C++ code, the loop
iterations run on a single thread.

For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

• The type of the loop index must be representable by an integer type on the
target hardware. Use a type that does not require a multiword type in
the generated code.

• parfor for standalone code generation requires the toolchain approach
for building executables or libraries. Do not change settings that cause
the code generation software to use the template makefile approach. See
“Project or Configuration is Using the Template Makefile” on page 20-25.

• Do not use the following constructs in the body of a parfor loop:

-
Nested parfor-loops

You can have a parfor loop inside another parfor-loop. However, the
inner parfor loop will be executed on a single thread as an ordinary
for-loop.

Inside a parfor loop, you can call a function that contains another
parfor-loop.

22-23

22 Accelerating MATLAB® Algorithms

-
Break and Return statements

You cannot use break or return statements inside a parfor-loop.

-
Global and persistent variables

You cannot use persistent variables in the body of a parfor loop.
However, inside the loop, you can call a function that uses persistent
variables. In the generated MEX function or C/C++ code, each thread
maintains its own copy of the persistent variables. The copies of the
persistent variables for the serial thread and each of the parallel threads
are independent of each other.

-
Reductions on MATLAB classes

You cannot use reductions on MATLAB classes inside a parfor-loop.

-
Reductions on char variables

You cannot use reductions on char variables inside a parfor-loop.

For example, you cannot generate C code for the following MATLAB code:

c = char(0);
parfor i=1:10

c = c + char(1);
end

In the parfor-loop, MATLAB makes c a double. For code generation, c
cannot change type.

-

22-24

Algorithm Acceleration Using Parallel for-loops (parfor)

Reductions using external C code

You cannot use coder.ceval in reductions inside a parfor-loop.. For
example, you cannot generate code for the following parfor-loop:

parfor i=1:4
y=coder.ceval('myCFcn',y,i);

end

Instead, write a local function that calls the C code using coder.ceval
and call this function in the parfor-loop. For example:

parfor i=1:4
y = callMyCFcn(y,i);

end
...
function y = callMyCFcn(y,i)
y = coder.ceval('mCyFcn', y , i);

end

-
Extrinsic function calls

You cannot call extrinsic functions using coder.extrinsic inside a
parfor-loop. Calls to functions that contain extrinsic calls result in a
run-time error.

-
Inlining functions

MATLAB Coder does not inline functions into parfor-loops, including
functions that use coder.inline('always').

-
Unrolling loops

You cannot use coder.unroll inside a parfor-loop.

22-25

22 Accelerating MATLAB® Algorithms

If a loop is unrolled inside a parfor-loop, MATLAB Coder cannot classify
the variable. For example:

for j=coder.unroll(3:6)
y(i,j)=y(i,j)+i+j;

end

This code is unrolled to:

y(i,3)=y(i,3)+i+3;
...
y(i,6)=y(i,6)+i+6;

In the unrolled code, MATLAB Coder cannot classify the variable y
because y is indexed in different ways inside the parfor-loop.

MATLAB Coder does not support variables that it cannot classify. For
more information, see “Classification of Variables in parfor-loops” on
page 22-29.

-
varargin/varargout

You cannot use varargin or varargout inside a parfor-loop.

22-26

Control Compilation of parfor-loops

Control Compilation of parfor-loops
By default, MATLAB Coder generates code that can run the parfor-loop on
multiple threads. To treat the parfor-loops as for-loops that run on a single
thread, disable parfor:

• By using the codegen function with -O disable:openmp option at the
command line.

• By setting Enable OpenMP library if possible to No under All Settings
tab in the Project Settings dialog box.

When to Disable parfor
Disable parfor if you want to:

• Compare the execution times of the serial and parallel versions of the
generated code.

• Investigate failures. If the parallel version of the generated code fails,
disable parfor and generate a serial version to facilitate debugging.

• Use C compilers that do not support OpenMP.

22-27

22 Accelerating MATLAB® Algorithms

Reduction Assignments in parfor-loops

What are Reduction Assignments?
Reduction assignments, or reductions, are an exception to the rule that loop
iterations must be independent. A reduction variable accumulates a value
that depends on all the loop iterations together, but is independent of the
iteration order. For a list of supported reduction variables see “Reduction
Variables” on page 22-32.

Multiple Reductions in a parfor-loop
You can perform the same reduction assignment multiple times within a
parfor-loop provided that you use the same data type each time.

For example, in the following parfor-loop, u(i) and v(i) must be the same
type.

parfor i = 1:10;
X = X + u(i);
X = X + v(i);

end

Similarly, the following example is valid provided that u(i) and v(i) are
the same type.

parfor i=1:10
r = foo(r,u(i));
r = foo(r,v(i));

end

22-28

Classification of Variables in parfor-loops

Classification of Variables in parfor-loops

In this section...

“Overview” on page 22-29

“Sliced Variables” on page 22-30

“Broadcast Variables” on page 22-32

“Reduction Variables” on page 22-32

“Temporary Variables” on page 22-38

Overview
MATLAB Coder classifies variables inside a parfor-loop into one of the
categories in the following table. It does not support variables that it
cannot classify. If a parfor-loop contains variables that cannot be uniquely
categorized or if a variable violates its category restrictions, the parfor-loop
generates an error.

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different
iterations of the loop

Broadcast A variable defined before the loop whose value is used
inside the loop, but not assigned inside the loop

Reduction Accumulates a value across iterations of the loop,
regardless of iteration order

Temporary A variable created inside the loop, but unlike sliced or
reduction variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

a=0;
c=pi;
z=0;
r=rand(1,10);
parfor i=1:10

22-29

22 Accelerating MATLAB® Algorithms

a=i; % 'a' is a temporary variable
z=z+i; % 'z' is a reduction variable
b(i)=r(i); % 'b' is a sliced output variable;

% 'r' a sliced input variable
if i<=c % 'c' is a broadcast variable

d=2*a; % 'd' is a temporary variable
end

end

Sliced Variables
A sliced variable is one whose value can be broken up into segments, or slices,
which are then operated on separately by different threads. Each iteration
of the loop works on a different slice of the array.

In the next example, a slice of A consists of a single element of that array:

parfor i = 1:length(A)
B(i) = f(A(i));

end

Characteristics of a Sliced Variable
A variable in a parfor-loop is sliced if it has the following characteristics:

• Type of First-Level Indexing — The first level of indexing is parentheses,
().

• Fixed Index Listing — Within the first-level parenthesis, the list of indices
is the same for all occurrences of a given variable.

• Form of Indexing — Within the list of indices for the variable, exactly one
index involves the loop variable.

• Shape of Array — In assigning to a sliced variable, the right-hand side
of the assignment is not [] or '' (these operators indicate deletion of
elements).

Type of First-Level Indexing. For a sliced variable, the first level of indexing is
enclosed in parentheses, (). For example, A(...). If you reference a variable
using dot notation, A.x, the variable is not sliced.

Variable A on the left is not sliced; variable A on the right is sliced:

22-30

Classification of Variables in parfor-loops

A.q(i,12) A(i,12).q

Fixed Index Listing. Within the first-level parentheses of a sliced variable’s
indexing, the list of indices is the same for all occurrences of a given variable.

Variable B on the left is not sliced because B is indexed by i and i+1 in
different places. Variable B on the right is sliced.

parfor i = 1:10
B(i) = B(i+1) + 1;

end

parfor i = 1:10
B(i+1) = B(i+1) + 1;

end

Form of Indexing. Within the list of indices for a sliced variable, one index is
of the form i, i+k, i-k, k+i, or k-i.

• i is the loop variable.

• k is a constant or a simple (nonindexed) variable.

• Every other index is a constant, a simple variable, colon, or end.

When you use other variables along with the loop variable to index an array,
you cannot set these variables inside the loop. These variables are constant
over the execution of the entire parfor statement. You cannot combine the
loop variable with itself to form an index expression.

In the following examples, i is the loop variable, j and k are nonindexed
variables.

Variable A Is Not Sliced Variable A Is Sliced

A(i+f(k),j,:,3)
A(i,20:30,end)
A(i,:,s.field1)

A(i+k,j,:,3)
A(i,:,end)
A(i,:,k)

Shape of Array. A sliced variable must maintain a constant shape. In the
following examples, the variable A is not sliced:

22-31

22 Accelerating MATLAB® Algorithms

A(i,:) = [];
A(end + 1) = i;

Broadcast Variables
A broadcast variable is a variable other than the loop variable or a sliced
variable that is not modified inside the loop.

Reduction Variables
A reduction variable accumulates a value that depends on all the iterations
together, but is independent of the iteration order.

This example shows a parfor-loop that uses a scalar reduction assignment. It
uses the reduction variable x to accumulate a sum across 10 iterations of the
loop. The execution order of the iterations on the threads does not matter.

x = 0;
parfor i = 1:10

x = x + i;
end
x

Where expr is a MATLAB expression, reduction variables appear on both
sides of an assignment statement.

X = X + expr X = expr + X

X = X - expr See “Reduction Assignments,
Associativity, and Commutativity of
Reduction Functions” on page 22-37

X = X .* expr X = expr .* X

X = X * expr X = expr * X

X = X & expr X = expr & X

X = X | expr X = expr | X

X = min(X, expr) X = min(expr, X)

22-32

Classification of Variables in parfor-loops

X = max(X, expr) X = max(expr, X)

X=f(X, expr)
Function f must be a user-defined
function.

X = f(expr, X)
See “Reduction Assignments,
Associativity, and Commutativity of
Reduction Functions” on page 22-37

Each of the allowed statements is referred to as a reduction assignment. A
reduction variable can appear only in assignments of this type.

The following example shows a typical usage of a reduction variable X:

X = ...; % Do some initialization of X
parfor i = 1:n

X = X + d(i);
end

This loop is equivalent to the following, where each d(i) is calculated by
a different iteration:

X = X + d(1) + ... + d(n)

If the loop were a regular for-loop, the variable X in each iteration would get
its value either before entering the loop or from the previous iteration of the
loop. However, this concept does not apply to parfor-loops.

In a parfor-loop, the value of X is not updated directly inside each thread.
Rather, additions of d(i) are done in each thread, with i ranging over the
subset of 1:n being performed on that thread. The software then accumulates
the results into X.

Similarly, the reduction:

r=r<op> x(i)

is equivalent to:

r=r<op>x(1)] <op>x(2)...<op>x(n)

The operation <op> is first applied to x(1)...x(n), then the partial result is
applied to r.

22-33

22 Accelerating MATLAB® Algorithms

If operation <op> takes two inputs, it should meet one of the following criteria:

• Take two arguments of typeof(x(i)) and return typeof(x(i))

• Take one argument of typeof(r) and one of typeof(x(i)) and return
typeof(r)

Rules for Reduction Variables

Use the same reduction function or operation in all reduction
assignments. For a reduction variable, you must use the same reduction
function or operation in all reduction assignments for that variable. In
the following example, the parfor-loop on the left is not valid because the
reduction assignment uses + in one instance, and * in another.

Invalid Use of Reduction Variable Valid Use of Reduction Variable

parfor i = 1:n
if A > 5*k

A = A + 1;
else

A = A * 2;
end

parfor i = 1:n
if A > 5*k

A = A * 3;
else

A = A * 2;
end

Restrictions on reduction function parameter and return types. A
reduction r=r<op> x(i), should take arguments of typeof(x(i)) and return
typeof(x(i)) or take arguments of typeof(r) and typeof(x(i)) and return
typeof(r).

In the following example, in the invalid loop, r is a fixed-point type and 2 is
not. To fix this issue, cast 2 to be the same type as r.

22-34

Classification of Variables in parfor-loops

Invalid Use of Reduction Variable Valid Use of Reduction Variable

function r = fiops(in)
r=fi(in,'WordLength',20,...

'FractionLength',14,...
'SumMode','SpecifyPrecision',...
'SumWordLength',20,...
'SumFractionLength',14,...
'ProductMode', 'SpecifyPrecision',...
'ProductWordLength',20,...
'ProductFractionLength',14);

parfor i = 1:10
r = r*2;

end

r=fi(in,'WordLength',20,...
'FractionLength',14,...
'SumMode','SpecifyPrecision',...
'SumWordLength',20,...
'SumFractionLength',14,...
'ProductMode','SpecifyPrecision',...
'ProductWordLength',20,...
'ProductFractionLength',14);

T = r.numerictype;
F = r.fimath;
parfor i = 1:10

r = r*fi(2,T,F);
end

22-35

22 Accelerating MATLAB® Algorithms

In the following example, the reduction function fcn is invalid because it does
not handle the case when input u is fixed point. (The + and * operations are
automatically polymorphic.) You must write a polymorphic version of fcn
to handle the expected input types.

Invalid Use of Reduction Variable Valid Use of Reduction Variable

function [y0, y1, y2] = pfuserfcn(u)
y0 = 0;
y1 = 1;
[F, N] = fiprops();
y2 = fi(1,N,F);
parfor (i=1:numel(u),12)

y0 = y0 + u(i);
y1 = y1 * u(i);
y2 = fcn(y2, u(i));

end
end

function y = fcn(u, v)
y = u * v;

end

function [y0, y1, y2] = pfuserfcn(u)
y0 = 0;
y1 = 1;
[F, N] = fiprops();
y2 = fi(1,N,F);
parfor (i=1:numel(u),12)

y0 = y0 + u(i);
y1 = y1 * u(i);
y2 = fcn(y2, u(i));

end
end
% fcn handles inputs of type double
% and fi
function y = fcn(u, v)

if isa(u,'double')
y = u * v;

else
[F, N] = fiprops();
y = u * fi(v,N,F);

end
end

function [F, N] = fiprops()
N = numerictype(1,96,30);
F = fimath('ProductMode',...

'SpecifyPrecision',...
'ProductWordLength',96);

end

22-36

Classification of Variables in parfor-loops

Reduction Assignments, Associativity, and Commutativity of
Reduction Functions
Reduction Assignments. MATLAB Coder does not allow reduction variables
to be read anywhere in the parfor-loop except in reduction statements. In
the following example, the call foo(r) after the reduction statement r=r+i
causes the loop to be invalid.

function r = temp %#codegen
r = 0;
parfor i=1:10

r = r + i;
foo(r);

end
end

Associativity in Reduction Assignments. If you use a user-defined function
f in the definition of a reduction variable, to get deterministic behavior of
parfor-loops, the reduction function f must be associative.

Note If f is not associative, MATLAB Coder does not generate an error. You
must write code that meets this recommendation.

To be associative, the function f must satisfy the following for all a, b, and c:

f(a,f(b,c)) = f(f(a,b),c)

Commutativity in Reduction Assignments. Some associative functions,
including +, ., min, and max, are also commutative. That is, they satisfy the
following for all a and b:

f(a,b) = f(b,a)

The function f of a reduction assignment must be commutative. If f is
not commutative, different executions of the loop might result in different
answers.

Unless f is a known noncommutative built-in, the software assumes that it
is commutative.

22-37

22 Accelerating MATLAB® Algorithms

Temporary Variables
A temporary variable is a variable that is the target of a direct, nonindexed
assignment, but is not a reduction variable. In the following parfor-loop, a
and d are temporary variables:

a = 0;
z = 0;
r = rand(1,10);
parfor i = 1:10

a = i; % Variable a is temporary
z = z + i;
if i <= 5

d = 2*a; % Variable d is temporary
end

end

In contrast to the behavior of a for-loop, before each iteration of a parfor-loop,
MATLAB Coder effectively clears temporary variables. Because the iterations
must be independent, the values of temporary variables cannot be passed
from one iteration of the loop to another. Therefore, temporary variables
must be set inside the body of a parfor-loop, so that their values are defined
separately for each iteration.

A temporary variable in the context of the parfor statement is different from
a variable with the same name that exists outside the loop.

Uninitialized Temporaries
Because temporary variables are cleared at the beginning of every iteration,
MATLAB Coder can detect certain cases in which an iteration through the
loop uses the temporary variable before it is set in that iteration. In this case,
MATLAB Coder issues a static error rather than a run-time error, because
there is little point in allowing execution to proceed if a run-time error will
occur. For example, suppose you write:

b = true;
parfor i = 1:n

if b && some_condition(i)
do_something(i);
b = false;

22-38

Classification of Variables in parfor-loops

end
...

end

This loop is acceptable as an ordinary for-loop, but as a parfor-loop, b is a
temporary variable because it occurs directly as the target of an assignment
inside the loop. Therefore, it is cleared at the start of each iteration, so its use
in the condition of the if is uninitialized. (If you change parfor to for, the
value of b assumes sequential execution of the loop, so that do_something(i)
is executed for only the lower values of i until b is set false.)

22-39

22 Accelerating MATLAB® Algorithms

Accelerate MATLAB Algorithms That Use Parallel for-loops
(parfor)

This example shows how to generate a MEX function for a MATLAB
algorithm that contains a parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen
a=ones(10,256);
r=rand(10,256);
parfor i=1:10

a(i,:)=real(fft(r(i,:)));
end

2 Generate a MEX function for test_parfor. At the MATLAB command
line, enter:

codegen test_parfor

codegen generates a MEX function, test_parfor_mex, in the current
folder.

3 Run the MEX function. At the MATLAB command line, enter:

test_parfor_mex

Because you did not specify the maximum number of threads to use, the
generated MEX function executes the loop iterations in parallel on the
maximum number of available cores.

22-40

Specify Maximum Number of Threads in parfor-loops

Specify Maximum Number of Threads in parfor-loops
This example shows how to specify the maximum number of threads to use
for a parfor-loop. Because you specify the maximum number of threads to
use, the generated MEX function executes the loop iterations in parallel on
as many cores as available, up to the maximum number that you specify. If
you specify more threads than there are cores available, the MEX function
uses the available cores.

1 Write a MATLAB function, specify_num_threads, that uses one input to
specify the maximum number of threads to execute a parfor-loop in the
generated MEX function. For example:

function y = specify_num_threads(u) %#codegen
y = ones(1,100);
% u specifies maximum number of threads
parfor (i = 1:100,u)

y(i) = i;
end

end

2 Generate a MEX function for specify_num_threads. Use -args {0} to
specify that input u is a scalar double. Use -report to generate a code
generation report. At the MATLAB command line, enter:

codegen -report specify_num_threads -args {0}

codegen generates a MEX function, specify_num_threads_mex, in the
current folder.

3 Run the MEX function, specifying that it try to run in parallel on four
threads. At the MATLAB command line, enter:

specify_num_threads_mex(4)

The generated MEX function runs on up to four cores. If less than four
cores are available, the MEX function runs on the maximum number of
cores available at the time of the call.

22-41

22 Accelerating MATLAB® Algorithms

Troubleshooting parfor-loops

What Causes Errors About the Use of Global
Structures in Parallel Regions?
• The body of the parfor-loop contains global or persistent variable
declarations. parfor does not support such declarations.

• Local variables use more memory than the specified stack size. When this
occurs, MATLAB Coder moves the local variables to a static area and
accesses them using a pointer in a global structure. MATLAB Coder does
not support the use of global structures in parallel regions. If possible,
increase the stack size.

If you are using... Action For More Information

A MATLAB Coder project In the Project Settings
dialog box All Settings tab,
under Advanced, set Inline
stack limit to the new limit.

“Specifying Build
Configuration Parameters
in the Project Settings Dialog
Box” on page 19-29

codegen at the command line
with a configuration object

Create a coder.CodeConfig or
coder.EmbeddedCodeConfig
object, as applicable, and
set the InlineStackLimit
parameter to the new limit.

“Specifying Build
Configuration Parameters
at the Command Line Using
Configuration Objects” on
page 19-30

Compiler Does Not Support OpenMP
The MATLAB Coder software uses the Open Multi-Processing (OpenMP)
application interface to support shared-memory, multicore code generation.
This allows you to use parfor to generate MEX functions or C/C++ code that
run in parallel on multiple cores on the target hardware. OpenMP is enabled
by default. If your compiler does not support OpenMP, MATLAB Coder
generates a warning.

Install a compiler that supports OpenMP. You can use supported
compilers except Microsoft Visual Studio SDK, Open Watcom, LCC,
and Apple Xcode with Clang. For a list of supported compilers, see
http://www.mathworks.com/support/compilers/current_release/.

22-42

Accelerating Simulation of Bouncing Balls

Accelerating Simulation of Bouncing Balls
This example shows how to accelerate MATLAB algorithm execution using a
generated MEX function. It uses the ’codegen’ command to generate a MEX
function for a complicated application that uses multiple MATLAB files.
You can use ’codegen’ to check that your MATLAB code is suitable for code
generation and, in many cases, to accelerate your MATLAB algorithm. You
can run the MEX function to check for run-time errors.

Prerequisites

To run this example, you must install a C compiler and set it up using the ’mex
-setup’ command. For more information, see Setting Up Your C Compiler.

Create a New Folder and Copy Relevant Files

The following code will create a folder in your current working folder (pwd).
The new folder will contain only the files that are relevant for this example. If
you do not want to affect the current folder (or if you cannot generate files in
this folder), change your working folder.

Run Command: Create a New Folder and Copy Relevant Files

coderdemo_setup('coderdemo_bouncing_balls');

About the ’run_balls’ Function

The run_balls.m function takes a single input to specify the number of
bouncing balls to simulate. The simulation runs and plots the balls bouncing
until there is no energy left and returns the state (positions) of all the balls.

type run_balls

% balls = run_balls(n)
% Given 'n' number of balls, run a simulation until the balls come to a
% complete halt (or when the system has no more kinetic energy).
function balls = run_balls(n) %#codegen

% Copyright 2010-2011 The MathWorks, Inc.

22-43

22 Accelerating MATLAB® Algorithms

% Seeding the random number generator will guarantee that we get
% precisely the same simulation every time we call this function.
old_settings = rng(1283,'V4');

% The 'cdata' variable is a matrix representing the colordata bitmap which
% will be rendered at every time step.
cdata = zeros(400,600,'uint8');

% Setup figure windows
im = setup_figure_window(cdata);

% Get the initial configuration for 'n' balls.
balls = initialize_balls(cdata, n);

energy = 2; % Something greater than 1
while energy > 1

% Clear the bitmap
cdata(:,:) = 0;
% Apply one iteration of movement
[cdata,balls,energy] = step_function(cdata,balls);
% Render the current state
cdata = draw_balls(cdata, balls);
refresh_image(im, cdata);

end

% Restore RNG settings.
rng(old_settings);

Generate the MEX Function

First, generate a MEX function using the command codegen followed by the
name of the MATLAB file to compile. Pass an example input (-args 0) to
indicate that the generated MEX function will be called with an input of
type double.

codegen run_balls -args 0

The ’run_balls’ function calls other MATLAB functions, but you need to
specify only the entry-point function when calling ’codegen’.

22-44

Accelerating Simulation of Bouncing Balls

By default, ’codegen’ generates a MEX function named ’run_balls_mex’ in the
current folder. This allows you to test the MATLAB code and MEX function
and compare the results.

Compare Results

Run and time the original ’run_balls’ function followed by the generated MEX
function.

tic, run_balls(50); t1 = toc;
tic, run_balls_mex(50); t2 = toc;

Estimated speed up is:

22-45

22 Accelerating MATLAB® Algorithms

fprintf(1, 'Speed up: x ~%2.1f\n', t1/t2);

Speed up: x ~21.7

Clean Up

Remove files and return to original folder

Run Command: Cleanup

cleanup

22-46

23

Calling C/C++ Functions
from Generated Code

• “External Function Calls from Generated Code” on page 23-2

• “Call External Functions Using coder.ceval” on page 23-7

• “Return Multiple Values from C Functions” on page 23-9

• “How MATLAB® Coder™ Infers C/C++ Data Types” on page 23-10

23 Calling C/C++ Functions from Generated Code

External Function Calls from Generated Code

In this section...

“Calling External Functions from Generated Code” on page 23-2

“Why Call External Functions from Generated Code?” on page 23-2

“How To Call External Functions” on page 23-2

“Pass Arguments by Reference to External Functions” on page 23-3

“Manipulate C Data” on page 23-5

Calling External Functions from Generated Code
You can call external functions from generated code. The external functions
must have a C programming interface. The code generation software provides
functions for:

• Calling external functions from generated code.

• Passing arguments by reference to external code.

• Manipulating C/C++ data.

By using these functions, you gain unrestricted access to external code.
Misuse of these functions or errors in your code can destabilize MATLAB
when generating MEX functions.

Why Call External Functions from Generated Code?
Call external functions from generated code when you want to:

• Use legacy code.

• Use your own optimized functions instead of generated code.

• Interface your libraries and hardware with MATLAB functions.

How To Call External Functions
To call external functions, use one of the following methods:

23-2

External Function Calls from Generated Code

• The coder.ceval function in your MATLAB code. coder.ceval passes
function input and output arguments to C/C++ functions by value or by
reference.

• The coder.ExternalDependency class to define methods that call the
functions. These methods use the coder.ceval function. In your MATLAB
code, use these methods to call external functions.

Define the called functions in external C/C++ source files, object files, or
libraries. You must then include C/C++ source files, libraries, object files, and
header files in the build configuration. See “Specify External File Locations”
on page 21-12.

Pass Arguments by Reference to External Functions
By default, coder.ceval passes arguments by value to the C/C++ function
whenever C/C++ supports passing arguments by value. You can pass
MATLAB variables as arguments by reference to external C/C++ functions
with the following constructs:

• coder.ref — pass value by reference.

• coder.rref — pass read-only value by reference.

• coder.wref — pass write-only value by reference.

These constructs offer the following benefits:

• Passing values by reference optimizes memory use.

When you pass arguments by value, MATLAB Coder passes a copy of the
value of each argument to the C/C++ function to preserve the original
values. When you pass arguments by reference, MATLAB Coder does not
copy values. If you need to pass large matrices to the C/C++ function, the
memory savings can be significant.

Passing write-only values by reference allows you to return multiple
outputs.

Use coder.wref to return multiple outputs from your C/C++ function,
including arrays and matrices. Otherwise, the C/C++ function can return
only a single scalar value through its return statement.

23-3

23 Calling C/C++ Functions from Generated Code

Do not store pointers that you pass to C/C++ functions because MATLAB
Coder optimizes the code based on the assumption that you do not store the
addresses of these variables. Storing the addresses might invalidate our
optimizations leading to incorrect behavior. For example, if a MATLAB
function passes a pointer to an array using coder.ref, coder.rref, or
coder.wref, then the C/C++ function can modify the data in the array—but
you should not store the pointer for future use.

When you pass arguments by reference using coder.rref, coder.wref, and
coder.ref, the corresponding C/C++ function signature must declare these
variables as pointers of the same data type. Otherwise, the C/C++ compiler
generates a type mismatch error.

For example, suppose your MATLAB function calls an external C function
ctest:

function y = fcn()
u = pi;

y = 0;
y = coder.ceval('ctest',u);

Now suppose the C function signature is:

double ctest(double *a)

When you compile the code, you get a type mismatch error because
coder.ceval calls ctest with an argument of type double when ctest
expects a pointer to a double-precision, floating-point value.

Match the types of arguments in coder.ceval with their counterparts in the
C function. For instance, you can fix the error in the previous example by
passing the argument by reference:

y = coder.ceval('ctest', coder.rref(u));

You can pass a reference to an element of a matrix. For example, to pass the
second element of the matrix v, you can use the following code:

y = coder.ceval('ctest', coder.ref(v(1,2)));

23-4

External Function Calls from Generated Code

Manipulate C Data
The construct coder.opaque allows you to manipulate C/C++ data that a
MATLAB function does not recognize. You can store the opaque data in a
variable or structure field and pass it to, or return it from, a C/C++ function
using coder.ceval.

Declaring Opaque Data
The following example uses coder.opaque to declare a variable f as a FILE *
type.

% This example returns its own source code by using

% fopen/fread/fclose.

function buffer = filetest

%#codegen

% Declare 'f' as an opaque type 'FILE *'

f = coder.opaque('FILE *', 'NULL');

% Open file in binary mode

f = coder.ceval('fopen', cstring('filetest.m'), cstring('rb'));

% Read from file until end of file is reached and put

% contents into buffer

n = int32(1);

i = int32(1);

buffer = char(zeros(1,8192));

while n > 0

% By default, MATLAB converts constant values

% to doubles in generated code

% so explicit type conversion to in32 is inserted.

n = coder.ceval('fread', coder.ref(buffer(i)), int32(1), ...

int32(numel(buffer)), f);

i = i + n;

end

coder.ceval('fclose',f);

buffer = strip_cr(buffer);

% Put a C termination character '\0' at the end of MATLAB string

function y = cstring(x)

23-5

23 Calling C/C++ Functions from Generated Code

y = [x char(0)];

% Remove character 13 (CR) but keep character 10 (LF)

function buffer = strip_cr(buffer)

j = 1;

for i = 1:numel(buffer)

if buffer(i) ~= char(13)

buffer(j) = buffer(i);

j = j + 1;

end

end

buffer(i) = 0;

23-6

Call External Functions Using coder.ceval

Call External Functions Using coder.ceval

In this section...

“Workflow for Calling External Functions” on page 23-7

“Best Practices for Calling External Code from Generated Code” on page
23-8

Workflow for Calling External Functions
To call external C/C++ functions from generated code:

1 Write your C/C++ functions in external source files or libraries.

2 Create header files, if required.

The header file defines the data types used by the C/C++ functions that
MATLAB Coder generates in code, as described in “Mapping MATLAB
Types to C/C++ Types” on page 23-10.

Tip One way to add these type definitions is to include the header file
tmwtypes.h, which defines general data types supported by MATLAB. This
header file is in matlabroot/extern/include. Check the definitions in
tmwtypes.h to determine if they are compatible with your target. If not,
define these types in your own header files.

3 In your MATLAB function, add calls to coder.ceval to invoke your
external C/C++ functions.

You need one coder.ceval statement for each call to a C/C++ function.
In your coder.ceval statements, use coder.ref, coder.rref, and
coder.wref constructs as required (see “Pass Arguments by Reference to
External Functions” on page 23-3).

4 Include the custom C/C++ functions in the build. See “Specify External File
Locations” on page 21-12.

5 Check for compilation warnings about data type mismatches.

23-7

23 Calling C/C++ Functions from Generated Code

Perform this check so that you catch type mismatches between C/C++ and
MATLAB (see “How MATLAB® Coder™ Infers C/C++ Data Types” on page
23-10).

6 Generate code and fix errors.

7 Run your application.

Best Practices for Calling External Code from
Generated Code
The following are recommended practices when calling C/C++ code from
generated code.

• Start small. — Create a test function and learn how coder.ceval and
its related constructs work.

• Use separate files. — Create a file for each C/C++ function that you call.
Make sure that you call the C/C++ functions with suitable types.

• In a header file, declare a function prototype for each function that you call,
and include this header file in the generated code. For more information,
see “Specify External File Locations” on page 21-12.

23-8

Return Multiple Values from C Functions

Return Multiple Values from C Functions
The C language restricts functions from returning multiple outputs; instead,
they return only a single, scalar value. The constructs coder.ref and
coder.wref allow MATLAB functions to exchange multiple outputs with the
external C functions that they call.

For example, suppose you write a MATLAB function foo that takes two
inputs x and y and returns three outputs a, b, and c. In MATLAB, you call
this function as follows:

[a, b, c] = foo (x, y)

If you rewrite foo as a C function, you cannot return a, b, and c through the
return statement. You can create a C function with multiple pointer type
input arguments, and pass the output parameters by reference. For example:

foo(double x, double y, double *a, double *b, double *c)

Then you can call the C function with multiple outputs from a MATLAB
function using coder.wref constructs:

coder.ceval ('foo', x, y, ...
coder.wref(a), coder.wref(b), coder.wref(c));

Similarly, suppose that one of the outputs a is also an input argument. In this
case, create a C function with multiple pointer type input arguments, and
pass the output parameters by reference. For example:

foo(double *a, double *b, double *c)

Then call the C function from a MATLAB function using coder.wref and
coder.rref constructs:

coder.ceval ('foo', coder.ref(a), coder.wref(b), coder.wref(c));

23-9

23 Calling C/C++ Functions from Generated Code

How MATLAB Coder Infers C/C++ Data Types

In this section...

“Mapping MATLAB Types to C/C++ Types” on page 23-10

“Mapping 64-Bit Integer Types to C/C++” on page 23-12

“Mapping Fixed-Point Types to C/C++” on page 23-12

“Mapping Arrays to C/C++” on page 23-13

“Mapping Complex Values to C/C++” on page 23-13

“Mapping Structures to C/C++ Structures” on page 23-15

“Mapping Strings to C/C++” on page 23-15

“Mapping Multiword Types to C/C++” on page 23-15

Mapping MATLAB Types to C/C++ Types
The C/C++ type associated with a MATLAB variable or expression is based
on the following properties:

• Class

• Size

• Complexity

By default, the MATLAB Coder software tries to use built-in C/C++ types in
the generated code. If the target hardware supports the built-in C type, the
software generates a built-in C type for these MATLAB types.

int8 uint8 double

int16 uint16 single

int32 uint32 char

int64 uint64

The built-in C/C++ type that the code generation software uses depends on
the target hardware. You have the option to use MathWorks C/C++ data
types instead of built-in C/C++ types. For information about setting this
option, see “Specify Data Type Used in Generated Code” on page 19-25.

23-10

How MATLAB® Coder™ Infers C/C++ Data Types

The following translation table shows how the MATLAB Coder software maps
MATLAB types to MathWorks C/C++ data types.

MATLAB Type MATLAB C/C++ Data
Type

Reference Type for
MATLAB C/C++ Data
Type

int8 int8_T int8_T *

int16 int16_T int16_T *

int32 int32_T int32_T *

int64 See “Mapping 64-Bit Integer Types to C/C++” on
page 23-12.

uint8 uint8_T uint8_T *

uint16 uint16_T uint16_T *

uint32 uint32_T uint32_T *

uint64 See “Mapping 64-Bit Integer Types to C/C++” on
page 23-12.

double real_T real_T *

single real32_T real32_T *

char char_T char *

logical boolean_T boolean_T *

fi numerictype also influences the C/C++ type.
Integer type varies according to the MATLAB
fixed-point type, as described in “Mapping
Fixed-Point Types to C/C++” on page 23-12.

struct The MATLAB Coder software translates
structures to C/C++ types field-by-field. See
“Mapping Structures to C/C++ Structures” on
page 23-15 .

complex See “Mapping Complex Values to C/C++” on page
23-13.

Function handles Not supported.

Multiword types See “Mapping Multiword Types to C/C++” on
page 23-15.

23-11

23 Calling C/C++ Functions from Generated Code

Mapping 64-Bit Integer Types to C/C++
The C/C++ data type associated with a 64-bit integer MATLAB type depends
on the sizes of the integer types on the target hardware. If a type wide enough
for a 64-bit type does not exist, then a 64-bit type maps to a multiword type.

By default, MATLAB Coder software tries to map int64 and uint64 types to
built-in C types. For a multiword type, the software uses a built-in C type
for the array in the struct that represents the multiword type. You have
the option to use MATLAB C/C++ data types instead of built-in types. The
following table shows how 64 bit integer types map to MATLAB C/C++ data
types.

MATLAB Type MATLAB C/C++ Type Multiword MATLAB
C/C++ Type

int64 int64_T int64m_T

unit64 uint64_T uint64m_T

complex int64 cint64_T cint64m_T

complex uint64 cuint64_T cuint64m_T

See “Mapping Multiword Types to C/C++” on page 23-15.

Mapping Fixed-Point Types to C/C++
The numerictype properties of a fi object determine the C/C++ data type.
By default, the code generation software tries to use built-in C/C++ types.
However, you can choose to use MATLAB C/C++ data types instead. The
following table shows how the Signedness, WordLength, and FractionLength
properties determine the MATLAB C/C++ data type. The MATLAB C/C++
data type is the next larger target word size that can store the fixed-point
value, based on its word length. The sign of the integer type matches the
sign of the fixed-point type.

23-12

How MATLAB® Coder™ Infers C/C++ Data Types

Signedness Word Length Fraction
Length

MATLAB
C/C++
Data Type

Reference
Type for
MATLAB
C/C++
Data Type

1 16 15 int16_T int16_T *

1 13 10 int16_T int16_T *

0 19 15 uint32_T uint32_T
*

1 8 7 int8_T int8_T *

Mapping Arrays to C/C++
By default, the code generation software tries to use built-in C/C++ types for
arrays in the generated code. However, you can choose to use MATLAB C/C++
data types instead. The following translation table shows how MATLAB
Coder software maps arrays to MATLAB C/C++ data types. In the first
column, the arrays are specified by the MATLAB function zeros:

zeros(number of rows, number of columns, data type)

MATLAB array data is laid out in column major order.

Array MATLAB C/C++
Data Type

Reference Type
for MATLAB C/C++
Data Type

zeros(10, 5, 'int8') int8_T int8_T *

zeros(5, 10, 'int8') int8_T int8_T *

zeros(3, 7) real_T real_T *

zeros(10, 1, 'single') real32_T real32_T *

Mapping Complex Values to C/C++
The following translation table shows how the MATLAB Coder software infers
complex values in generated code.

23-13

23 Calling C/C++ Functions from Generated Code

Complex MATLAB C/C++ Data
Type

Reference Type for
MATLAB C/C++ Data
Type

complex int8 cint8_T cint8_T *

complex int16 cint16_T cint16_T *

complex int32 cint32_T cint32_T *

complex int64 See “Mapping 64-Bit Integer Types to C/C++” on
page 23-12.

complex uint8 cuint8_T cuint8_T *

complex uint16 cuint16_T cuint16_T *

complex uint32 cuint32_T cuint32_T *

complex uint64 See “Mapping 64-Bit Integer Types to C/C++” on
page 23-12.

complex double creal_T creal_T *

complex single creal32_T creal32_T *

The MATLAB Coder software defines each complex value as a structure with
a real component re and an imaginary component im, as in this example
from tmwtypes.h:

typedef struct {
real32_T re;/* Real component*/
real32_T im;/* Imaginary component*/

} creal32_T;

MATLAB Coder uses the names re and im in generated code to represent the
components of complex numbers. For example, suppose you define a variable
x of type creal32_T. The generated code references the real component as
x.re and the imaginary component as x.im.

If your C/C++ library requires a different representation, you can define your
own versions of MATLAB Coder complex types. However, you must use the
names re for the real components and im for the imaginary components in
your definitions.

23-14

How MATLAB® Coder™ Infers C/C++ Data Types

The MATLAB Coder software represents a matrix of complex numbers as
an array of structures.

Mapping Structures to C/C++ Structures
The MATLAB Coder software translates structures to C/C++ types
field-by-field. The order of the field items is preserved as the order in
MATLAB. To control the name of the generated C/C++ structure type, or
provide a definition, use the coder.cstructname function.

Note If you are not using dynamic memory allocation, arrays in structures
translate into single-dimension arrays, not pointers.

Mapping Strings to C/C++
The MATLAB Coder software translates MATLAB strings to C/C++ character
matrices. You cannot use character matrices as substitutes for C/C++ strings
because they are not null terminated. You can terminate a MATLAB string
with a null character by appending a zero to the end of the string: ['sample
string' 0]. A single character translates to a C/C++ char type, not a C/C++
string.

Caution Failing to null-terminate your MATLAB strings might cause C/C++
code to crash without compiler errors or warnings.

Mapping Multiword Types to C/C++
The MATLAB Coder software translates multiword types to structure types
that contain an array of integers. The array dimensions depend on the size of
the widest integer type on the target hardware. For example, for a 128-bit
fixed-point type, if the widest integer type on the target hardware is 32-bits,
the software generates a structure with an array of four 32-bit integers.

typedef struct
{

unsigned int chunks[4];
} uint128m_T;

23-15

23 Calling C/C++ Functions from Generated Code

If the widest integer type on the target hardware is long with a size of
64-bits, MATLAB Coder generates a structure with an array of two 64-bit
long integers.

typedef struct
{

unsigned long chunks[2];
} uint128m_T;

23-16

24

External Code Integration

• “External Code Integration for Code Generation” on page 24-2

• “Encapsulating the Interface to External Code” on page 24-3

• “Best Practices for Using coder.ExternalDependency” on page 24-4

• “Encapsulate Interface to an External C Library” on page 24-6

• “Update Build Information from MATLAB code” on page 24-10

• “Call External Functions Encapsulated by coder.ExternalDependency” on
page 24-11

24 External Code Integration

External Code Integration for Code Generation
You can integrate external code with MATLAB code intended for code
generation. The external code can be external libraries, object files, or C/C++
source code.

The basic workflow is:

1 Create the external code.

2 Call the external code from MATLAB code.

3 Specify the external file locations.

4 Generate code from the MATLAB code.

Call the external code and specify the file locations in one of the following
ways:

• Use coder.ExternalDependency to encapsulate the interface to the
external code. The updateBuildInfo method specifies file locations and
other build information. Write methods that define the programming
interface to the external functions. In your MATLAB code, use these
methods to call the external functions.

• Use coder.ceval to call external functions from your MATLAB code.
When you generate code, define the locations of external files.

• Use coder.ceval to call external functions from your MATLAB code. Use
coder.updateBuildInfo to specify external file locations and update build
information.

See Also coder.ExternalDependency | coder.ceval | coder.updateBuildInfo

Concepts • “Encapsulating the Interface to External Code” on page 24-3
• “Specify External File Locations” on page 21-12
• “External Function Calls from Generated Code” on page 23-2

24-2

Encapsulating the Interface to External Code

Encapsulating the Interface to External Code
Use the coder.ExternalDependency class to encapsulate the interface
between external code and MATLAB code intended for code generation. With
the encapsulation, you can separate the details of the interface from your
MATLAB code. The methods of coder.ExternalDependency:

• specify the location of external files

• update build information

• define the programming interface for external functions

In your MATLAB code, you can call the external code without providing build
information.

The workflow is:

1 Write a class definition file for a class that derives from
coder.ExternalDependency.

2 Store the class definition file in a folder on the MATLAB path.

3 In your MATLAB code, use a method of the class to call an external
function.

4 Generate code from your MATLAB code.

See Also coder.ExternalDependency |

Related
Examples

• “Encapsulate Interface to an External C Library” on page 24-6

Concepts • “Best Practices for Using coder.ExternalDependency” on page 24-4

24-3

24 External Code Integration

Best Practices for Using coder.ExternalDependency

In this section...

“Terminate Code Generation for Unsupported External Dependency” on
page 24-4

“Parameterize Methods for MATLAB and Generated Code” on page 24-4

“Parameterize updateBuildInfo for Multiple Platforms” on page 24-5

Terminate Code Generation for Unsupported External
Dependency
The isSupportedContextmethod returns true if the external code interface is
supported in the build context. If the external code interface is not supported,
do not return false. Instead, use error to terminate code generation with an
error message. For example:

function tf = isSupportedContext(ctx)
if ctx.isMatlabHostTarget()

tf = true;
else

error('MyLibrary is not available for this target');
end

end

Parameterize Methods for MATLAB and Generated
Code
Parameterize methods that call external functions so that the methods run
in MATLAB. For example:

...
if coder.target('MATLAB')

% running in MATLAB, use built-in addition
c = a + b;

else
% running in generated code, call library function
coder.ceval('adder_initialize');

24-4

Best Practices for Using coder.ExternalDependency

end
...

Parameterize updateBuildInfo for Multiple Platforms
Parameterize the updateBuildInfo method to support multiple platforms.
For example, use coder.BuildConfig.getStdLibInfo to get the
platform-specific library file extensions.

...
[~, linkLibExt, execLibExt, ~] = ctx.getStdLibInfo()

% Link files
linkFiles = strcat('adder', linkLibExt);
buildInfo.addLinkObjects(linkFiles, linkPath, linkPriority, ...

linkPrecompiled, linkLinkOnly, group);
...

See Also coder.ExternalDependency | coder.BuildConfig | error

Related
Examples

• “Encapsulate Interface to an External C Library” on page 24-6

24-5

24 External Code Integration

Encapsulate Interface to an External C Library
This example shows how to encapsulate the interface to an external C
dynamic linked library using coder.ExternalDependency.

Write a function adder that returns the sum of its inputs.

function c = adder(a,b)
%#codegen
c = a + b;

end

Generate a library that contains adder.

codegen('adder','-args', {-2,5}, '-config:dll', '-report');

Write the class definition file AdderAPI.m to encapsulate the library interface.

%==
% This class abstracts the API to an external Adder library.
% It implements static methods for updating the build information
% at compile time and build time.
%==

classdef AdderAPI < coder.ExternalDependency
%#codegen

methods (Static)

function bName = getDescriptiveName(~)
bName = 'AdderAPI';

end

function tf = isSupportedContext(ctx)
if ctx.isMatlabHostTarget()

tf = true;
else

error('adder library not available for this target');
end

end

24-6

Encapsulate Interface to an External C Library

function updateBuildInfo(buildInfo, ctx)
[~, linkLibExt, execLibExt, ~] = ctx.getStdLibInfo();

% Header files
hdrFilePath = fullfile(pwd, 'codegen', 'dll', 'adder');
buildInfo.addIncludePaths(hdrFilePath);

% Link files
linkFiles = strcat('adder', linkLibExt);
linkPath = hdrFilePath;
linkPriority = '';
linkPrecompiled = true;
linkLinkOnly = true;
group = '';
buildInfo.addLinkObjects(linkFiles, linkPath, ...

linkPriority, linkPrecompiled, linkLinkOnly, group);

% Non-build files
nbFiles = 'adder';
nbFiles = strcat(nbFiles, execLibExt);
buildInfo.addNonBuildFiles(nbFiles,'','');

end

%API for library function 'adder'
function c = adder(a, b)

if coder.target('MATLAB')
% running in MATLAB, use built-in addition
c = a + b;

else
% running in generated code, call library function
coder.cinclude('adder.h');

% Because MATLAB Coder generated adder, use the
% housekeeping functions before and after calling
% adder with coder.ceval.
% Call initialize function before calling adder for the
% first time.

coder.ceval('adder_initialize');
c = 0;

24-7

24 External Code Integration

c = coder.ceval('adder', a, b);

% Call the terminate function after
% calling adder for the last time.

coder.ceval('adder_terminate');
end

end
end

end

Write a function adder_main that calls the external library function adder.

function y = adder_main(x1, x2)
%#codegen

y = AdderAPI.adder(x1, x2);
end

Generate a MEX function for adder_main. The MEX Function exercises the
coder.ExternalDependency methods.

codegen('adder_main', '-args', {7,9}, '-report')

Copy the library to the current folder using the file extension for your
platform.

For Windows, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.dll'));

For Linux, use:

copyfile(fullfile(pwd, 'codegen', 'dll', 'adder', 'adder.so'));

Run the MEX function and verify the result.

adder_main_mex(2,3)

See Also coder.ExternalDependency | coder.BuildConfig | error

24-8

Encapsulate Interface to an External C Library

Concepts • “Encapsulating the Interface to External Code” on page 24-3
• “Build Information Object” on page 19-131
• “Build Information Methods” on page 19-131

24-9

24 External Code Integration

Update Build Information from MATLAB code
You can choose to control aspects of the build process that occur after code
generation but before compilation. For example, you can specify compiler
or linker options.

To customize the build from your MATLAB code:

1 In your MATLAB code, call coder.updateBuildInfo to update the build
information object. You specify a build information object method and
the input arguments for the method.

2 Generate code from your MATLAB code.

See Also coder.updateBuildInfo

24-10

Call External Functions Encapsulated by coder.ExternalDependency

Call External Functions Encapsulated by
coder.ExternalDependency

When a method of a class derived from coder.ExternalDependency defines
the interface to an external function, you call the external function by calling
the method.

Suppose you define the following method for a class named AdderAPI:

function c = adder(a, b)
coder.cinclude('adder.h');
c = 0;
c = coder.ceval('adder', a, b);

end

This method defines the interface to a function adder which has two inputs, a
and b. In your MATLAB code, call adder this way:

y = AdderAPI.adder(x1, x2);

See Also coder.ExternalDependency |

Related
Examples

• “Encapsulate Interface to an External C Library” on page 24-6

Concepts • “Encapsulating the Interface to External Code” on page 24-3

24-11

24 External Code Integration

24-12

25

Generate Efficient and
Reusable Code

• “Optimization Strategies” on page 25-3

• “Modularize MATLAB Code” on page 25-6

• “Eliminate Redundant Copies of Function Inputs” on page 25-7

• “Inline Code” on page 25-9

• “Control Inlining Using Configuration Object” on page 25-11

• “Fold Function Calls into Constants” on page 25-14

• “Control Stack Space Usage” on page 25-16

• “Stack Allocation and Performance” on page 25-17

• “Rewrite Logical Array Indexing as a Loop” on page 25-18

• “Dynamic Memory Allocation and Performance” on page 25-19

• “Minimize Dynamic Memory Allocation” on page 25-21

• “Provide Maximum Size for Variable-size Arrays” on page 25-22

• “Disable Dynamic Memory Allocation During Code Generation” on page
25-29

• “Set Dynamic Memory Allocation Threshold” on page 25-30

• “Excluding Unused Paths from Generated Code” on page 25-33

• “Prevent Code Generation for Unused Execution Paths” on page 25-34

• “Generate Code with Parallel for-loops (parfor)” on page 25-37

• “Minimize Redundant Operations in Loops” on page 25-39

25 Generate Efficient and Reusable Code

• “Unroll for-Loops” on page 25-41

• “Support for Integer Overflow and Non-Finites” on page 25-44

• “Integrate Custom Code” on page 25-46

• “MATLAB® Coder™ Optimizations in Generated Code” on page 25-52

• “Generate Reusable Code” on page 25-56

25-2

Optimization Strategies

Optimization Strategies
MATLAB Coder introduces certain optimizations when generating C/C++
code or MEX functions from your MATLAB code. For more information, see
“MATLAB® Coder™ Optimizations in Generated Code” on page 25-52.

To optimize your generated code further, you can:

• Adapt your MATLAB code.

• Control code generation using the configuration object from the
command-line or the Project Settings dialog box.

To optimize the execution speed of generated code, for these conditions,
perform the following actions as necessary:

Condition Action

You have for-loops whose iterations are
independent of each other.

“Generate Code with Parallel for-loops (parfor)”
on page 25-37

You have variable-size arrays in your MATLAB
code.

“Minimize Dynamic Memory Allocation” on
page 25-21

You have multiple variable-size arrays in your
MATLAB code. You want dynamical memory
allocation for larger arrays and static allocation
for smaller ones.

“Set Dynamic Memory Allocation Threshold”
on page 25-30

You want your generated function to be called
by reference.

“Eliminate Redundant Copies of Function
Inputs” on page 25-7

You are calling small functions in your
MATLAB code.

“Inline Code” on page 25-9

You have limited target memory for your
generated code. You want to inline small
functions and generate separate code for larger
ones.

“Control Inlining Using Configuration Object”
on page 25-11

You do not want to generate code for
expressions that contain constants only.

“Fold Function Calls into Constants” on page
25-14

25-3

25 Generate Efficient and Reusable Code

Condition Action

You have loop operations in your MATLAB
code that do not depend on the loop index.

“Minimize Redundant Operations in Loops” on
page 25-39

You have integer operations in your MATLAB
code. You know beforehand that integer
overflow will not occur during execution of your
generated code.

“Disable Support for Integer Overflow” on page
25-44

You know beforehand that Inf-s and NaN-s will
not occur during execution of your generated
code.

“Disable Support for Non-Finites” on page
25-45

You have for-loops with few iterations. “Unroll for-Loops” on page 25-41

You already have legacy C/C++ code optimized
for your target environment.

“Integrate Custom Code” on page 25-46

To optimize the memory usage of generated code, for these conditions, perform
the following actions as necessary:

Condition Action

You have if/else/elseif
statements or
switch/case/otherwise statements
in your MATLAB code. You do
not require some branches of the
statements in your generated code.

“Prevent Code Generation for
Unused Execution Paths” on page
25-34

You have logical array indexing
in your MATLAB code. For more
information, see “Using Logicals in
Array Indexing”.

“Rewrite Logical Array Indexing as
a Loop” on page 25-18

You want your generated function to
be called by reference.

“Eliminate Redundant Copies of
Function Inputs” on page 25-7

You have limited stack space for
your generated code.

“Control Stack Space Usage” on page
25-16

You are calling small functions in
your MATLAB code.

“Inline Code” on page 25-9

25-4

Optimization Strategies

Condition Action

You have limited target memory for
your generated code. You want to
inline small functions and generate
separate code for larger ones.

“Control Inlining Using
Configuration Object” on page
25-11

You do not want to generate code for
expressions that contain constants
only.

“Fold Function Calls into Constants”
on page 25-14

You have loop operations in your
MATLAB code that do not depend on
the loop index.

“Minimize Redundant Operations in
Loops” on page 25-39

You have integer operations in
your MATLAB code. You know
beforehand that integer overflow
will not occur during execution of
your generated code.

“Disable Support for Integer
Overflow” on page 25-44

You know beforehand that Inf-s and
NaN-s will not occur during execution
of your generated code.

“Disable Support for Non-Finites” on
page 25-45

25-5

25 Generate Efficient and Reusable Code

Modularize MATLAB Code
For large MATLAB code, streamline code generation by modularizing the
code:

1 Break up your MATLAB code into smaller, self-contained sections.

2 Save each section in a MATLAB function.

3 Generate C/C++ code for each function.

4 Call the generated C/C++ functions in sequence from a wrapper MATLAB
function using coder.ceval.

5 Generate C/C++ code for the wrapper function.

Besides streamlining code generation for the original MATLAB code, this
approach also supplies you with C/C++ codes for the individual sections. You
can reuse these codes later by integrating them with other generated C/C++
code using coder.ceval.

25-6

Eliminate Redundant Copies of Function Inputs

Eliminate Redundant Copies of Function Inputs
You can reduce the number of copies in your generated code by writing
functions that use the same variable as both an input and an output. For
example:

function A = foo(A, B) %#codegen
A = A * B;
end

This coding practice uses a reference parameter optimization. When a
variable acts as both input and output, MATLAB passes the variable by
reference in the generated code instead of redundantly copying the input to a
temporary variable. In the preceding example, input A is passed by reference
in the generated code because it also acts as an output for function foo:

...
/* Function Definitions */
void foo(double *A, double B)
{

*A *= B;
}
...

The reference parameter optimization reduces memory usage and execution
time, especially when the variable passed by reference is a large data
structure. To achieve these benefits at the call site, call the function with the
same variable as both input and output.

By contrast, suppose you rewrite function foo without the optimization:

function y = foo2(A, B) %#codegen
y = A * B;
end

MATLAB generates code that passes the inputs by value and returns the
value of the output:

...
/* Function Definitions */
double foo2(double A, double B)

25-7

25 Generate Efficient and Reusable Code

{
return A * B;

}
...

In some cases, the output of the function cannot be a modified version of its
inputs. If you do not use the inputs later in the function, you can modify
your code to operate on the inputs instead of on a copy of the inputs. One
method is to create additional return values for the function. For example,
consider the code:

function y1=foo(u1) %#codegen
x1=u1+1;
y1=bar(x1);

end

function y2=bar(u2)
% Since foo does not use x1 later in the function,
% it would be optimal to do this operation in place
x2=u2.*2;
% The change in dimensions in the following code
% means that it cannot be done in place
y2=[x2,x2];

end

You can modify this code to eliminate redundant copies.

function y1=foo(u1) %#codegen
u1=u1+1;
[y1, u1]=bar(u1);

end

function [y2, u2]=bar(u2)
u2=u2.*2;

% The change in dimensions in the following code
% still means that it cannot be done in place
y2=[u2,u2];

end

25-8

Inline Code

Inline Code
MATLAB uses internal heuristics to determine whether or not to inline
functions in the generated code. You can use the coder.inline directive to
fine-tune these heuristics for individual functions. For more information,
see coder.inline.

In this section...

“Prevent Function Inlining” on page 25-9

“Use Inlining in Control Flow Statements” on page 25-9

Prevent Function Inlining
In this example, function foo is not inlined in the generated code:

function y = foo(x)
coder.inline('never');
y = x;

end

Use Inlining in Control Flow Statements
You can use coder.inline in control flow code. If the software detects
contradictory coder.inline directives, the generated code uses the default
inlining heuristic and issues a warning.

Suppose you want to generate code for a division function that will be
embedded in a system with limited memory. To optimize memory use in the
generated code, the following function, inline_division, manually controls
inlining based on whether it performs scalar division or vector division:

function y = inline_division(dividend, divisor)

% For scalar division, inlining produces smaller code
% than the function call itself.
if isscalar(dividend) && isscalar(divisor)

coder.inline('always');
else
% Vector division produces a for-loop.

25-9

25 Generate Efficient and Reusable Code

% Prohibit inlining to reduce code size.
coder.inline('never');

end

if any(divisor == 0)
error('Can not divide by 0');

end

y = dividend / divisor;

Related
Examples

• “Control Inlining Using Configuration Object” on page 25-11

25-10

Control Inlining Using Configuration Object

Control Inlining Using Configuration Object
This example shows how to control inlining behavior using the codegen
configuration object. Restrict inlining when:

• The size of generated code exceeds desired limits due to excessive inlining of
functions. Suppose you include the statement, coder.inline('always'),
inside a certain function. You then call that function at a large number of
different sites in your code. The generated code can be large due to the
function being inlined every time it is called.

The call sites must be different. For instance, inlining does not lead to large
code if the function to be inlined is called several times inside a loop.

• You have limited RAM or stack space.

In this section...

“Control Size of Functions Inlined” on page 25-11

“Control Size of Functions After Inlining” on page 25-12

“Control Stack Size Limit on Inlined Functions” on page 25-12

Control Size of Functions Inlined
You can control the maximum size of functions that can be inlined from
the Project Settings dialog box or the command line. The function size is
measured in terms of an abstract number of instructions, not actual MATLAB
instructions or instructions in the target processor. Experiment with this
parameter to obtain the inlining behavior that you want.

• In the Project Settings dialog box, on the All Settings tab, set the value of
the field, Inline threshold, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value
of the property, InlineThreshold, to the maximum size that you want.

cfg = coder.config('lib');
cfg.InlineThreshold = 100;

Generate code using this configuration object.

25-11

25 Generate Efficient and Reusable Code

Control Size of Functions After Inlining
You can control the maximum size of functions after inlining from the Project
Settings dialog box or the command line. The function size is measured in
terms of an abstract number of instructions, not actual MATLAB instructions
or instructions in the target processor. Experiment with this parameter to
obtain the inlining behavior that you want.

• In the Project Settings dialog box, on the All Settings tab, set the value of
the field, Inline threshold max, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value
of the property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');
cfg.InlineThresholdMax = 100;

Generate code using this configuration object.

Control Stack Size Limit on Inlined Functions
Specifying a limit on the stack space constrains the amount of inlining
allowed. For out-of-line functions, stack space for variables local to the
function is released when the function returns. However, for inlined functions,
stack space remains occupied by the local variables even after the function
is executed. The value of the property, InlineStackLimit, is measured in
bytes. Based on information from the target hardware settings, the software
estimates the number of stack variables that can be accomodated by a certain
value of InlineStackLimit. This estimate excludes possible C compiler
optimizations such as putting variables in registers.

You can control the stack size limit on inlined functions from the Project
Settings dialog box or the command line.

• In the Project Settings dialog box, on the All Settings tab, set the value of
the field, Inline stack limit, to the maximum size that you want.

• At the command line, create a codegen configuration object. Set the value
of the property, InlineThresholdMax, to the maximum size that you want.

cfg = coder.config('lib');
cfg.InlineStackLimit = 2000;

25-12

Control Inlining Using Configuration Object

Generate code using this configuration object.

Related
Examples

• “Inline Code” on page 25-9

25-13

25 Generate Efficient and Reusable Code

Fold Function Calls into Constants
This example shows how to specify constants in generated code using
coder.const. The code generation software folds an expression or a function
call in a coder.const statement into a constant in generated code. Because
the generated code does not have to evaluate the expression or call the
function every time, this optimization reduces the execution time of the
generated code.

Write a function AddShift that takes an input Shift and adds it to the
elements of a vector. The vector consists of the square of the first 10 natural
numbers. AddShift generates this vector.

function y = AddShift(Shift) %#codegen
y = (1:10).^2+Shift;

Generate code for AddShift using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport AddShift -args 0

The code generation software generates code for creating the vector. It adds
Shift to each element of the vector during vector creation. The definition of
AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{

int k;
for (k = 0; k < 10; k++) {

y[k] = (double)((1 + k) * (1 + k)) + Shift;
}

}

Replace the statement

y = (1:10).^2+Shift;

with

y = coder.const((1:10).^2)+Shift;

25-14

Fold Function Calls into Constants

Generate code for AddShift using the codegen command. Open the Code
Generation Report.

codegen -config:lib -launchreport AddShift -args 0

The code generation software creates the vector containing the squares of the
first 10 natural numbers. In the generated code, it adds Shift to each element
of this vector. The definition of AddShift in generated code looks as follows:

void AddShift(double Shift, double y[10])
{

int i0;
static const signed char iv0[10] = { 1, 4, 9, 16, 25, 36,

49, 64, 81, 100 };

for (i0 = 0; i0 < 10; i0++) {
y[i0] = (double)iv0[i0] + Shift;

}
}

See Also coder.const

25-15

25 Generate Efficient and Reusable Code

Control Stack Space Usage
This example shows how to set the maximum stack space used by the
generated code. Set the maximum stack usage when:

• You have limited stack space, for instance, in case of embedded targets.

• Your C compiler reports a run-time stack overflow.

The value of the property, InlineStackLimit, is measured in bytes. Based on
information from the target hardware settings, the software estimates the
number of stack variables that can be accommodated by a certain value of
InlineStackLimit. This estimate excludes possible C compiler optimizations
such as putting variables in registers.

Control Stack Space Usage Using Project Interface

1 On the Build tab Settings pane, set the Output type to C/C++ Static
Library, C/C++ Dynamic Library, or C/C++ Executable (depending on
your requirements).

2 Click theMore settings link to open the Project Settings dialog box.

3 On the Memory tab, set the field, Stack usage max, to the value that
you want.

Control Stack Space Usage from Command Line

1 Create a configuration object for code generation.

Use coder.config with arguments 'lib','dll' or 'exe' (depending on
your requirements). For example:

cfg = coder.config('lib');

2 Set the property, StackUsageMax, to the value that you want.

cfg.StackUsageMax=400000;

Concepts • “Stack Allocation and Performance” on page 25-17

25-16

Stack Allocation and Performance

Stack Allocation and Performance
By default, local variables are allocated on the stack. Large variables that do
not fit on the stack are statically allocated in memory.

Stack allocation typically uses memory more efficiently than static allocation.
However, stack space is sometimes limited, typically in embedded processors.
MATLAB Coder allows you to manually set a limit on the stack space usage to
make your generated code suitable for your target hardware. You can choose
this limit based on the target hardware configurations. For more information,
see “Control Stack Space Usage” on page 25-16.

25-17

25 Generate Efficient and Reusable Code

Rewrite Logical Array Indexing as a Loop
Rewriting logical array indexing as a loop can optimize the generated code for
both speed and readability. For more information on logical array indexing,
see “Using Logicals in Array Indexing”.

For example, the MATLAB function, foo, uses logical array indexing.

function x = foo(x,N) %#codegen
assert(all(size(x) == [1 100]))
x(x>N) = N;

The generated C code for this function is not very efficient. Rewrite the
MATLAB code to use a loop instead of logical indexing:

function x = foo_rewrite(x,N) %#codegen
assert(all(size(x) == [1 100]))
for ii=1:numel(x)

if x(ii) > N
x(ii) = N;

end
end

25-18

Dynamic Memory Allocation and Performance

Dynamic Memory Allocation and Performance
To achieve faster execution of generated code, minimize dynamic (or run-time)
memory allocation of arrays.

MATLAB Coder does not provide a size for unbounded arrays in generated
code. Instead, such arrays are referenced indirectly through pointers. For
such arrays, memory cannot be allocated during compilation of generated
code. Based on storage requirements for the arrays, memory is allocated and
freed at run time as required. This run-time allocation and freeing of memory
leads to slower execution of the generated code. For more information on
dynamic memory allocation, see “Bounded Versus Unbounded Variable-Size
Data” on page 7-4.

When Dynamic Memory Allocation Occurs
Dynamic memory allocation occurs when the code generation software cannot
find upper bounds for variable-size arrays. The software cannot find upper
bounds when you specify the size of an array using a variable that is not a
compile-time constant. An example of such a variable is an input variable (or
a variable computed from an input variable).

Instances in the MATLAB code that might lead to dynamic memory allocation
are:

• Array initialization: You specify array size using a variable whose value
is known only at run time.

• After initialization of an array:

- You declare the array as variable-size using coder.varsize without
explicit upper bounds. After this declaration, you expand the array by
concatenation inside a loop. The number of loop runs is known only
at run time.

- You use a reshape function on the array. At least one of the size
arguments to the reshape function is known only at run time.

If you know the maximum possible size of the array, you can avoid dynamic
memory allocation. You can then provide an upper bound for the array and

25-19

25 Generate Efficient and Reusable Code

prevent dynamic memory allocation in generated code. For more information,
see “Minimize Dynamic Memory Allocation” on page 25-21.

25-20

Minimize Dynamic Memory Allocation

Minimize Dynamic Memory Allocation
When possible, you should minimize dynamic memory allocation since it leads
to slower execution of generated code. Dynamic memory allocation occurs
when the code generation software cannot find upper bounds for variable-size
arrays.

You can avoid dynamic memory allocation of a variable-size array if you know
its maximum possible size. To do so, follow these steps:

1 “Provide Maximum Size for Variable-size Arrays” on page 25-22.

2 Depending on your requirements, do one of the following:

• “Disable Dynamic Memory Allocation During Code Generation” on page
25-29.

• “Set Dynamic Memory Allocation Threshold” on page 25-30

Caution If a variable-size array in the MATLAB code does not have
a maximum size, disabling dynamic memory allocation leads to a code
generation error. Before disabling dynamic memory allocation, you must
provide a maximum size for variable-size arrays in your MATLAB code.

Concepts • “Dynamic Memory Allocation and Performance” on page 25-19

25-21

25 Generate Efficient and Reusable Code

Provide Maximum Size for Variable-size Arrays
To constrain array size for variable-size arrays, do one of the following:

•

Constrain Array Size Using assert Statements

If the variable specifying array size is not a compile-time constant, use
an assert statement with relational operators to constrain the variable.
Doing so helps the code generation software to determine a maximum size
for the array. An array of size equal to this maximum size is then defined
in the generated code (static memory allocation).

The following examples constrain array size using assert statements:

-
When Array Size Is Specified by Input Variables

Define a function array_init which initializes an array y with input
variable N:

function y = array_init (N)
assert(N < 25); % Generates exception if N >= 25
y = zeros(1,N);

The assert statement ensures that y is assigned an array of size 25
in the generated code. In the absence of the assert statement, y is
assigned a pointer to an array in the generated code, thus allowing
dynamic memory allocation.

-
When Array Size Is Obtained from Computation Using Input
Variables

Define a function, array_init_from_prod, which takes two input
variables, M and N, and uses their product to specify the size of an array,
y.

25-22

Provide Maximum Size for Variable-size Arrays

The following code restricts the product of M and N to 25. It then uses
this product to specify size of an array, y..

function y = array_init_from_prod (M,N)
size=M*N;
assert(size < 25); % Generates exception if size >= 25
y=zeros(1,size);

The assert statement ensures that y is assigned an array of size 25 in
the generated code.

Alternatively, if you restrict M and N individually, it leads to dynamic
memory allocation:

function y = array_init_from_prod (M,N)
assert(M < 5);
assert(N < 5);
size=M*N;
y=zeros(1,size);

This code causes dynamic memory allocation because M and N can both
have unbounded negative values. Therefore, their product can be
unbounded and positive even though, individually, their positive values
are bounded.

Tip Place the assert statement on a variable immediately before it is
used to specify array size.

Tip You can use assert statements to restrict array sizes in most cases.
When expanding an array inside a loop, this strategy does not work if the
number of loop runs is known only at run time.

•

25-23

25 Generate Efficient and Reusable Code

Restrict Concatenations in a Loop Using coder.varsize with Upper
Bounds

You can expand arrays beyond their initial size by concatenation. When
you concatenate additional elements inside a loop, there are two syntax
rules for expanding arrays.

1

Array size during initialization is not a compile-time constant

If the size of an array during initialization is not a compile-time constant,
you can expand it by concatenating additional elements:

function out=ExpandArray(in) % Expand an array by five elements
out = zeros(1,in);
for i=1:5

out = [out 0];
end

2

Array size during initialization is a compile-time constant

Before concatenating elements, you have to declare the array as
variable-size using coder.varsize:

function out=ExpandArray() % Expand an array by five elements
out = zeros(1,5);
coder.varsize('out');
for i=1:5

out = [out 0];
end

Either case leads to dynamic memory allocation. To prevent dynamic
memory allocation in such cases, use coder.varsize with explicit upper
bounds. This example shows how to use coder.varsize with explicit upper
bounds:

25-24

Provide Maximum Size for Variable-size Arrays

Restrict Concatenations Using coder.varsize with Upper Bounds

1 Define a function, RunningAverage, that calculates the running average
of an N-element subset of an array:

function avg=RunningAverage(N)

% Array whose elements are to be averaged
NumArray=[1 6 8 2 5 3];

% Initialize average:
% These will also be the first two elements of the function output

avg=[0 0];

% Place a bound on the argument
coder.varsize('avg',[1 8]);

% Loop to calculate running average
for i=1:N

s=0;
s=s+sum(NumArray(1:i));
avg=[avg s/i];

% Increase the size of avg as required by concatenation
end

The output, avg, is an array that you can expand as required to
accommodate the running averages. As a new running average is
calculated, it is added to the array avg through concatenation, thereby
expanding the array.

Because the maximum possible number of running averages is equal to
the number of elements in NumArray, you can supply an explicit upper
bound for avg in the coder.varsize statement. In this example, the
upper bound is 8 (the two initial elements plus the six elements of
NumArray).

2 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

25-25

25 Generate Efficient and Reusable Code

In the generated code, avg is assigned an array of size 8 (static memory
allocation). The function definition for RunningAverage appears as
follows (using built-in C types):

void RunningAverage (double N, double avg_data[8], int avg_size[2])

3 By contrast, if you remove the explicit upper bound, the generated code
dynamically allocates avg.

Replace the statement

coder.varsize('avg',[1 8]);

with:

coder.varsize('avg');

4 Generate code for RunningAverage with input argument of type double:

codegen -config:lib -report RunningAverage -args 2

In the generated code, avg is assigned a pointer to an array, thereby
allowing dynamic memory allocation. The function definition for
RunningAverage appears as follows (using built-in C types):

void Test(double N, emxArray_real_T *avg)

Note Dynamic memory allocation also occurs if you precede
coder.varsize('avg') with the following assert statement:

assert(N < 6);

The assert statement does not restrict the number of concatenations
within the loop.

•

25-26

Provide Maximum Size for Variable-size Arrays

Constrain Array Size When Rearranging a Matrix

The statement out = reshape(in,m,n,...) takes an array, in, as an
argument and returns array, out, having the same elements as in, but
reshaped as an m-by-n-by-... matrix. If one of the size variables m,n,....
is not a compile-time constant, then dynamic memory allocation of out
takes place.

To avoid dynamic memory allocation, use an assert statement before the
reshape statement to restrict the size variables m,n,... to numel(in).
This example shows how to use an assert statement before a reshape
statement:

Rearrange a Matrix into Given Number of Rows

1 Define a function, ReshapeMatrix, which takes an input variable, N, and
reshapes a matrix, mat, to have N rows:

function [out1,out2] = ReshapeMatrix(N)

mat = [1 2 3 4 5; 4 5 6 7 8]
% Since mat has 10 elements, N must be a factor of 10
% to pass as argument to reshape

out1 = reshape(mat,N,[]);
% N is not restricted

assert(N < numel(mat));
% N is restricted to number of elements in mat

out2 = reshape(mat,N,[]);

2 Generate code for ReshapeArray using the codegen command (the input
argument does not have to be a factor of 10):

codegen -config:lib -report ReshapeArray -args 3

While out1 is dynamically allocated, out2 is assigned an array with size
100 (=10 X 10) in the generated code.

25-27

25 Generate Efficient and Reusable Code

Tip If your system has limited memory, do not use the assert statement
in this way. For an n-element matrix, the assert statement creates an
n-by-n matrix, which might be large.

Related
Examples

• “Minimize Dynamic Memory Allocation” on page 25-21
• “Disable Dynamic Memory Allocation During Code Generation” on page
25-29
• “Set Dynamic Memory Allocation Threshold” on page 25-30

Concepts • “Dynamic Memory Allocation and Performance” on page 25-19

25-28

Disable Dynamic Memory Allocation During Code Generation

Disable Dynamic Memory Allocation During Code
Generation

Disabling dynamic memory allocation during code generation leads to faster
execution of generated code. You can disable dynamic memory allocation
explicitly from the project settings dialog box or the command line.

To disable dynamic memory allocation in the Project Settings box :

1 On the MATLAB Coder project Build tab, click More settings.

2 In the Project Settings dialog box Memory tab, under Enable
variable-sizing, set Dynamic memory allocation to Never.

To disable dynamic memory allocation from the command line:

1 In the MATLAB workspace, define the configuration object:

cfg=coder.config('lib');

2 Set the DynamicMemoryAllocation property of the configuration object to
Off:

cfg.DynamicMemoryAllocation = 'Off';

Disabling dynamic memory allocation leads to a code generation error if a
variable-size array in the MATLAB code does not have a maximum upper
bound. Therefore, you can also use this feature to identify variable-size arrays
in your MATLAB code that do not have a maximum upper bound. These
arrays are the ones that are dynamically allocated in the generated code.

Related
Examples

• “Minimize Dynamic Memory Allocation” on page 25-21
• “Provide Maximum Size for Variable-size Arrays” on page 25-22
• “Set Dynamic Memory Allocation Threshold” on page 25-30

Concepts • “Dynamic Memory Allocation and Performance” on page 25-19

25-29

25 Generate Efficient and Reusable Code

Set Dynamic Memory Allocation Threshold
This example shows how to specify a dynamic memory allocation threshold
for variable-size arrays. Dynamic memory allocation optimizes storage
requirements for variable-size arrays but causes slower execution of
generated code. Instead of disabling dynamic memory allocation for all
variable-sizearrays, you can disable it only for arrays below a certain size.
Set a dynamic memory allocation threshold to disable dynamic memory
allocation for array size below the threshold and enable it for array size at or
above the threshold.

Use this strategy when you want to:

• Disable dynamic memory allocation for smaller arrays. For smaller arrays,
it can be more efficient to speed up generated code by allocating memory
statically. Though static memory allocation can lead to unused storage
space, it might not be a significant consideration for smaller arrays.

• Enable dynamic memory allocation for larger arrays. For larger arrays,
you can reduce storage requirements significantly using dynamic memory
allocation.

Set Dynamic Memory Allocation Threshold Using
Project Interface

1 On the Build tab Settings pane, click the More settings link to open
the Project Settings dialog box.

2 On the Memory tab, select Enable variable-sizing.

3 On the same tab, select the For arrays with max size at or above
threshold option in the Dynamic memory allocation list.

4 Set the Dynamic memory allocation threshold to the value that you
want.

25-30

Set Dynamic Memory Allocation Threshold

The Dynamic memory allocation threshold value is measured in bytes.
Based on information from the target hardware settings, the software
estimates the size of the array that can be accommodated by a certain value
of DynamicMemoryAllocationThreshold. This estimate excludes possible
C compiler optimizations such as putting variables in registers.

25-31

25 Generate Efficient and Reusable Code

Set Dynamic Memory Allocation Threshold from
Command Line

1 Create a configuration object for code generation. Use coder.config with
arguments 'lib','dll' or 'exe' (depending on your requirements). For
example:

cfg = coder.config('lib');

2 Set the property, DynamicMemoryAllocation, to 'Threshold'.

cfg.DynamicMemoryAllocation='Threshold';

3 Set the property, DynamicMemoryAllocationThreshold, to the value that
you want.

cfg.DynamicMemoryAllocationThreshold = 40000;

The value stored in DynamicMemoryAllocationThreshold is measured
in bytes. Based on information from the target hardware settings, the
software estimates the size of the array that can be accommodated by a
certain value of DynamicMemoryAllocationThreshold. This estimate
excludes possible C compiler optimizations such as putting variables in
registers.

Related
Examples

• “Minimize Dynamic Memory Allocation” on page 25-21
• “Provide Maximum Size for Variable-size Arrays” on page 25-22
• “Disable Dynamic Memory Allocation During Code Generation” on page
25-29

Concepts • “Dynamic Memory Allocation and Performance” on page 25-19

25-32

Excluding Unused Paths from Generated Code

Excluding Unused Paths from Generated Code
In certain situations, you do not need some branches of an if/elseif/if
statement or a switch/case/otherwise statement in your generated code.
For instance :

• You have a MATLAB function that performs mutiple tasks determined by
a control-flow variable. You might not need some of the tasks in the code
generated from this function.

• You have an if/elseif/if statement in a MATLAB function performing
different tasks based on the nature (type/value) of the input. In some cases,
you know the nature of the input beforehand. If so, you do not need some
branches of the if statement.

You can prevent code generation for the unused branches of an
if/elseif/else statement or a switch/case/otherwise statement. Declare
the control-flow variable as a constant. The code generation software
generates code only for the branch that is chosen by the control-flow variable.

Related
Examples

• “Prevent Code Generation for Unused Execution Paths” on page 25-34

25-33

25 Generate Efficient and Reusable Code

Prevent Code Generation for Unused Execution Paths

In this section...

“Prevent Code Generation When Local Variable Controls Flow” on page
25-34

“Prevent Code Generation When Input Variable Controls Flow” on page
25-35

If a variable controls the flow of an if/elseif/if statement or a
switch/case/otherwise statement, declare it as constant so that code
generation takes place for one branch of the statement only.

Depending on the nature of the control-flow variable, you can declare it as
constant in two ways:

• If the variable is local to the MATLAB function, assign it to a constant
value in the MATLAB code. For an example, see “Prevent Code Generation
When Local Variable Controls Flow” on page 25-34.

• If the variable is an input to the MATLAB function, you can declare it
as constant using coder.Constant. For an example, see “Prevent Code
Generation When Input Variable Controls Flow” on page 25-35.

Prevent Code Generation When Local Variable
Controls Flow

1 Define a function SquareOrCube which takes an input variable, in, and
squares or cubes its elements based on whether the choice variable, ch,
is set to s or c:

function out = SquareOrCube(ch,in) %#codegen
if ch=='s'

out = in.^2;
elseif ch=='c'

out = in.^3;
else

out = 0;
end

25-34

Prevent Code Generation for Unused Execution Paths

2 Generate code for SquareOrCube using the codegen command:

codegen -config:lib SquareOrCube -args {'s',zeros(2,2)}

The generated C code squares or cubes the elements of a 2-by-2 matrix
based on the input for ch.

3 Add the following line to the definition of SquareOrCube:

ch = 's';

The generated C code squares the elements of a 2-by-2 matrix. The choice
variable, ch, and the other branches of the if/elseif/if statement do
not appear in the generated code.

Prevent Code Generation When Input Variable
Controls Flow

1 Define a function MathFunc, which performs different mathematical
operations on an input, in, depending on the value of the input, flag.:

function out = MathFunc(flag,in) %#codegen
%# codegen
switch flag

case 1
out=sin(in);

case 2
out=cos(in);

otherwise
out=sqrt(in);

end

2 Generate code for MathFunc using the codegen command:

codegen -config:lib MathFunc -args {1,zeros(2,2)}

The generated C code performs different math operations on the elements
of a 2-by-2 matrix based on the input for ch.

3 Generate code for MathFunc, declaring the argument, flag, as a constant
using coder.Constant:

25-35

25 Generate Efficient and Reusable Code

codegen -config:lib MathFunc -args {coder.Constant(1),zeros(2,2)}

The generated C code finds the sine of the elements of a 2-by-2 matrix. The
variable, flag, and the switch/case/otherwise statement do not appear
in the generated code.

Concepts • “Excluding Unused Paths from Generated Code” on page 25-33

25-36

Generate Code with Parallel for-loops (parfor)

Generate Code with Parallel for-loops (parfor)
This example shows how to generate C code for a MATLAB algorithm that
contains a parfor-loop.

1 Write a MATLAB function that contains a parfor-loop. For example:

function a = test_parfor %#codegen
a=ones(10,256);
r=rand(10,256);
parfor i=1:10

a(i,:)=real(fft(r(i,:)));
end

2 Generate C code for test_parfor. At the MATLAB command line, enter:

codegen -config:lib test_parfor

Because you did not specify the maximum number of threads to use, the
generated C code executes the loop iterations in parallel on the available
number of cores.

3 To specify a maximum number of threads, rewrite the function
test_parfor as follows:

function a = test_parfor(u) %#codegen
a=ones(10,256);
r=rand(10,256);
parfor (i=1:10,u)

a(i,:)=real(fft(r(i,:)));
end

4 Generate C code for test_parfor. Use -args 0 to specify that the input, u,
is a scalar double. At the MATLAB command line, enter:

codegen -config:lib test_parfor -args 0

In the generated code, the iterations of the parfor-loop run on at most the
number of cores specified by the input, u. If less than u cores are available,
the iterations run on the cores available at the time of the call.

25-37

25 Generate Efficient and Reusable Code

Concepts • “Algorithm Acceleration Using Parallel for-loops (parfor)” on page 22-20
• “Classification of Variables in parfor-loops” on page 22-29
• “Reduction Assignments in parfor-loops” on page 22-28

25-38

Minimize Redundant Operations in Loops

Minimize Redundant Operations in Loops
This example shows how to minimize redundant operations in loops. When a
loop operation does not depend on the loop index, performing it inside a loop is
redundant. This redundancy often goes unnoticed when you are performing
multiple operations in a single MATLAB statement inside a loop. For
example, in the following code, the inverse of the matrix B is being calculated
100 times inside the loop although it does not depend on the loop index:

for i=1:100
C=C + inv(B)*A^i*B;

end

Performing such redundant loop operations can lead to unnecessary
processing. To avoid unnecessary processing, move operations outside loops
as long as they do not depend on the loop index.

1 Define a function, SeriesFunc(A,B,n), that calculates the sum of n terms
in the following power series expansion:

C B AB B A B 1 1 1 2 ...

function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A
C=zeros(size(A));

% Perform the series sum
for i=1:n

C=C+inv(B)*A^i*B;
end

2 Generate code for SeriesFunc with 4-by-4 matrices passed as input
arguments for A and B:

X = coder.typeof(zeros(4));
codegen -config:lib -launchreport SeriesFunc -args {X,X,10}

25-39

25 Generate Efficient and Reusable Code

In the generated code, the inversion of B is performed n times inside the
loop. It is more economical to perform the inversion operation once outside
the loop because it does not depend on the loop index.

3 Modify SeriesFunc as follows:

function C=SeriesFunc(A,B,n)

% Initialize C with a matrix having same dimensions as A
C=zeros(size(A));

% Perform the inversion outside the loop
inv_B=inv(B);

% Perform the series sum
for i=1:n

C=C+inv_B*A^i*B;
end

This procedure performs the inversion of B only once, leading to faster
execution of the generated code.

25-40

Unroll for-Loops

Unroll for-Loops
Unrolling for-loops eliminates the loop logic by creating a separate copy of
the loop body in the generated code for each iteration. Within each iteration,
the loop index variable becomes a constant.

You can also force loop unrolling for individual functions by wrapping the loop
header in a coder.unroll function. For more information, see coder.unroll.

Limit Copying the for-loop Body in Generated Code
To limit the number of times that you copy the body of a for-loop in generated
code:

1 Write a MATLAB function getrand(n) that uses a for-loop to generate a
vector of length n and assign random numbers to specific elements. Add a
test function test_unroll. This function calls getrand(n) with n equal
to values both less than and greater than the threshold for copying the
for-loop in generated code.

function [y1, y2] = test_unroll() %#codegen
% The directive %#codegen indicates that the function
% is intended for code generation

% Calling getrand 8 times triggers unroll
y1 = getrand(8);
% Calling getrand 50 times does not trigger unroll
y2 = getrand(50);

function y = getrand(n)
% Turn off inlining to make
% generated code easier to read
coder.inline('never');

% Set flag variable dounroll to repeat loop body
% only for fewer than 10 iterations
dounroll = n < 10;
% Declare size, class, and complexity
% of variable y by assignment
y = zeros(n, 1);
% Loop body begins

25-41

25 Generate Efficient and Reusable Code

for i = coder.unroll(1:2:n, dounroll)
if (i > 2) && (i < n-2)

y(i) = rand();
end;

end;
% Loop body ends

2 In the default output folder, codegen/lib/test_unroll, generate C static
library code for test_unroll :

codegen -config:lib test_unroll

In test_unroll.c, the generated C code for getrand(8) repeats the body
of the for-loop (unrolls the loop) because the number of iterations is less
than 10:

static void getrand(double y[8])
{

/* Turn off inlining to make */
/* generated code easier to read */
/* Set flag variable dounroll to repeat loop body */
/* only for fewer than 10 iterations */
/* Declare size, class, and complexity */
/* of variable y by assignment */
memset(&y[0], 0, sizeof(double) << 3);

/* Loop body begins */
y[2] = b_rand();
y[4] = b_rand();

/* Loop body ends */
}

The generated C code for getrand(50) does not unroll the for-loop because
the number of iterations is greater than 10:

static void b_getrand(double y[50])
{

int i;
int b_i;

25-42

Unroll for-Loops

/* Turn off inlining to make */
/* generated code easier to read */
/* Set flag variable dounroll to repeat loop body */
/* only for fewer than 10 iterations */
/* Declare size, class, and complexity */
/* of variable y by assignment */
memset(&y[0], 0, 50U * sizeof(double));

/* Loop body begins */
for (i = 0; i < 25; i++) {

b_i = (i << 1) + 1;
if ((b_i > 2) && (b_i < 48)) {

y[b_i - 1] = b_rand();
}

}

25-43

25 Generate Efficient and Reusable Code

Support for Integer Overflow and Non-Finites
In addition to code generated for your MATLAB function, the code-generation
software generates supporting code for the following situations:

• The result of an integer operation falls outside the range that a data type
can represent. This situation is known as integer overflow.

• Non-finite values (inf and NaN) are generated from an operation. The
supporting code is contained in the files rt_nonfinite.c, rtGetInf.c and
rtGetNaN.c (with corresponding header files).

You can suppress generation of the supporting code if you know beforehand
that such situations will not arise. This action reduces the size and increases
the speed of generated code at the cost of potentially producing results that do
not match simulation in case the situations arise.

Disable Support for Integer Overflow
You can disable support for integer overflow in the project settings dialog box
or at the command line. On disabling this support, the overflow behavior of
your generated code depends on your target C compiler. Most C compilers
wrap on overflow.

• In the project settings dialog box:

1 On the Build tab Settings pane, click theMore settings link to open
the Project Settings dialog box.

2 To disable support for integer overflow, on the Speed tab, clear
Saturate on integer overflow.

• At the command line:

1 Create a configuration object for code generation. Use coder.config
with arguments 'lib','dll' or 'exe' (depending on your requirements).
For example:

cfg = coder.config('lib');

2 To disable support for integer overflow, set the
SaturateOnIntegerOverflow property to false.

25-44

Support for Integer Overflow and Non-Finites

cfg.SaturateOnIntegerOverflow = false;

Disable Support for Non-Finites
You can disable support for non-finites (inf and NaN) in the project settings
dialog box or at the command line.

• In the project settings dialog box:

1 On the Build tab Settings pane, set the Output type to C/C++ Static
Library, C/C++ Dynamic Library, or C/C++ Executable (depending on
your requirements).

2 Click theMore settings link to open the Project Settings dialog box.

3 To disable support for integer overflow, on the Speed tab, clearSupport
non-finite numbers.

• At the command line:

1 Create a configuration object for code generation. Use coder.config
with arguments 'lib','dll' or 'exe' (depending on your requirements).
For example:

cfg = coder.config('lib');

2 To disable support for integer overflow, set the SupportNonFinite
property to false.

cfg.SupportNonFinite = false;

25-45

25 Generate Efficient and Reusable Code

Integrate Custom Code
This example shows how to integrate custom code to enhance performance
of generated code. Although MATLAB Coder generates optimized code for
most applications, you might have legacy code optimized for your specific
requirements. For example:

• You have custom libraries optimized for your target environment.

• You have custom libraries for functions not supported by MATLAB Coder.

• You have custom libraries that meet standards set by your company.

In such cases, you can integrate your custom code with the code generated by
MATLAB Coder.

This example illustrates how to integrate the function cublasSgemm from the
NVIDIA® CUDA® Basic Linear Algebra Subroutines (CUBLAS) library in
generated code. This function performs matrix multiplication on a Graphics
Processing Unit (GPU).

1 Define a class ExternalLib_API that derives from the class
coder.ExternalDependency. ExternalLib_API defines an interface to the
CUBLAS library through the following methods:

• getDescriptiveName: Returns a descriptive name for ExternalLib_API
to be used for error messages.

• isSupportedContext: Determines if the build context supports the
CUBLAS library.

• updateBuildInfo: Adds header file paths and link files to the build
information.

• GPU_MatrixMultiply: Defines the interface to the CUBLAS library
function cublasSgemm.

ExternalLib_API.m

classdef ExternalLib_API < coder.ExternalDependency
%#codegen

methods (Static)

25-46

Integrate Custom Code

function bName = getDescriptiveName(~)
bName = 'ExternalLib_API';

end

function tf = isSupportedContext(ctx)
if ctx.isMatlabHostTarget()

tf = true;
else

error('CUBLAS library not available for this target');
end

end

function updateBuildInfo(buildInfo, ctx)
[~, linkLibExt, ~, ~] = ctx.getStdLibInfo();

% Include header file path
% Include header files later using coder.cinclude
hdrFilePath = 'C:\My_Includes';
buildInfo.addIncludePaths(hdrFilePath);

% Include link files
linkFiles = strcat('libcublas', linkLibExt);
linkPath = 'C:\My_Libs';
linkPriority = '';
linkPrecompiled = true;
linkLinkOnly = true;
group = '';
buildInfo.addLinkObjects(linkFiles, linkPath, ...

linkPriority, linkPrecompiled, linkLinkOnly, group);

linkFiles = strcat('libcudart', linkLibExt);
buildInfo.addLinkObjects(linkFiles, linkPath, ...

linkPriority, linkPrecompiled, linkLinkOnly, group);

end

%API for library function 'cuda_MatrixMultiply'
function C = GPU_MatrixMultiply(A, B)

assert(isa(A,'single'), 'A must be single.');

25-47

25 Generate Efficient and Reusable Code

assert(isa(B,'single'), 'B must be single.');

if(coder.target('MATLAB'))
C=A*B;

else

% Include header files
% for external functions and typedefs
% Header path included earlier using updateBuildInfo
coder.cinclude('"cuda_runtime.h"');
coder.cinclude('"cublas_v2.h"');

% Compute dimensions of input matrices
m = int32(size(A, 1));
k = int32(size(A, 2));
n = int32(size(B, 2));

% Declare pointers to matrices on destination GPU
d_A = coder.opaque('float*');
d_B = coder.opaque('float*');
d_C = coder.opaque('float*');

% Compute memory to be allocated for matrices
% Single = 4 bytes
size_A = m*k*4;
size_B = k*n*4;
size_C = m*n*4;

% Define error variables
error = coder.opaque('cudaError_t');
cudaSuccessV = coder.opaque('cudaError_t', ...

'cudaSuccess');

% Assign memory on destination GPU
error = coder.ceval('cudaMalloc', ...

coder.wref(d_A), size_A);
assert(error == cudaSuccessV, ...

'cudaMalloc(A) failed');
error = coder.ceval('cudaMalloc', ...

coder.wref(d_B), size_B);

25-48

Integrate Custom Code

assert(error == cudaSuccessV, ...
'cudaMalloc(B) failed');

error = coder.ceval('cudaMalloc', ...
coder.wref(d_C), size_C);

assert(error == cudaSuccessV, ...
'cudaMalloc(C) failed');

% Define direction of copying
hostToDevice = coder.opaque('cudaMemcpyKind', ...

'cudaMemcpyHostToDevice');

% Copy matrices to destination GPU
error = coder.ceval('cudaMemcpy', ...

d_A, coder.rref(A), size_A, hostToDevice);
assert(error == cudaSuccessV, 'cudaMemcpy(A) failed');

error = coder.ceval('cudaMemcpy', ...
d_B, coder.rref(B), size_B, hostToDevice);

assert(error == cudaSuccessV, 'cudaMemcpy(B) failed');

% Define type and size for result
C = zeros(m, n, 'single');

error = coder.ceval('cudaMemcpy', ...
d_C, coder.rref(C), size_C, hostToDevice);

assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

% Define handle variables for external library
handle = coder.opaque('cublasHandle_t');
blasSuccess = coder.opaque('cublasStatus_t', ...

'CUBLAS_STATUS_SUCCESS');

% Initialize external library
ret = coder.opaque('cublasStatus_t');
ret = coder.ceval('cublasCreate', coder.wref(handle));
assert(ret == blasSuccess, 'cublasCreate failed');

TRANSA = coder.opaque('cublasOperation_t', ...
'CUBLAS_OP_N');

25-49

25 Generate Efficient and Reusable Code

alpha = single(1);
beta = single(0);

% Multiply matrices on GPU
ret = coder.ceval('cublasSgemm', handle, ...

TRANSA,TRANSA,m,n,k, ...
coder.rref(alpha),d_A,m, ...
d_B,k, ...
coder.rref(beta),d_C,k);

assert(ret == blasSuccess, 'cublasSgemm failed');

% Copy result back to local host
deviceToHost = coder.opaque('cudaMemcpyKind', ...

'cudaMemcpyDeviceToHost');
error = coder.ceval('cudaMemcpy', coder.wref(C), ...

d_C, size_C, deviceToHost);
assert(error == cudaSuccessV, 'cudaMemcpy(C) failed');

end
end

end
end

2 To perform the matrix multiplication using the interface defined in method
GPU_MatrixMultiply and the build information in ExternalLib_API,
include the following line in your MATLAB code:

C= ExternalLib_API.GPU_MatrixMultiply(A,B);

For instance, you can define a MATLAB function Matrix_Multiply that
solely performs this matrix multiplication.

function C = Matrix_Multiply(A, B) %#codegen
C= ExternalLib_API.GPU_MatrixMultiply(A,B);

3 Define a MEX configuration object using coder.config. For using the
CUBLAS libraries, set the target language for code generation to C++.

cfg=coder.config('mex');
cfg.TargetLang='C++';

25-50

Integrate Custom Code

4 Generate code for Matrix_Multiply using cfg as the configuration object
and two 2 X 2 matrices of type single as arguments. Since cublasSgemm
supports matrix multiplication for data type float, the corresponding
MATLAB matrices must have type single.

codegen -config cfg Matrix_Multiply ...
-args {ones(2,'single'),ones(2,'single')}

5 Test the generated MEX function Matrix_Multiply_mex using two 2 X 2
identity matrices of type single.

Matrix_Multiply_mex(eye(2,'single'),eye(2,'single'))

The output is also a 2 X 2 identity matrix.

See Also coder.ceval | coder.opaque | coder.rref | coder.wref |
assertcoder.ExternalDependency | coder.BuildConfig |

Related
Examples

• “Encapsulate Interface to an External C Library” on page 24-6

Concepts • “Encapsulating the Interface to External Code” on page 24-3

25-51

25 Generate Efficient and Reusable Code

MATLAB Coder Optimizations in Generated Code

In this section...

“Constant Folding” on page 25-52

“Loop Fusion” on page 25-53

“Successive Matrix Operations Combined” on page 25-54

“Unreachable Code Elimination” on page 25-54

In order to improve the execution speed and memory usage of generated code,
MATLAB Coder introduces the following optimizations:

Constant Folding
When possible, the code generation software evaluates expressions in your
MATLAB code that involve compile-time constants only. In the generated
code, it replaces these expressions with the result of the evaluations. This
behavior is known as constant folding. Because of constant folding, the
generated code does not have to evaluate the constants during execution.

The following example shows MATLAB code that is constant-folded during
code generation. The function MultiplyConstant multiplies every element in
a matrix by a scalar constant. The function evaluates this constant using the
product of three compile-time constants, a, b and c.

function out=MultiplyConstant(in) %#codegen
a=pi^4;
b=1/factorial(4);
c=exp(-1);
out=in.*(a*b*c);

end

The code generation software evaluates the expressions involving
compile-time constants, a,b, and c. It replaces these expressions with the
result of the evaluation in generated code.

Constant folding can occur when the expressions involve scalars only. To
explicitly enforce constant folding of expressions in other cases, use the

25-52

MATLAB® Coder™ Optimizations in Generated Code

coder.const function. For more information, see “Fold Function Calls into
Constants” on page 25-14.

Control Constant Folding
You can control the maximum number of instructions that can be
constant-folded from the command line or the Project Settings dialog box.

• At the command line, create a configuration object for code generation. Set
the property ConstantFoldingTimeout to the value that you want.

cfg=coder.config('lib');
cfg.ConstantFoldingTimeout = 200;

• In the Project Settings dialog box, on the All Settings tab, set the field
Constant folding timeout to the value that you want.

Loop Fusion
When possible, the code generation software fuses successive loops with
the same number of runs into a single loop in the generated code. This
optimization reduces loop overhead.

The following code contains successive loops, which are fused during code
generation. The function SumAndProduct evaluates the sum and product
of the elements in an array Arr. The function uses two separate loops to
evaluate the sum y_f_sum and product y_f_prod.

function [y_f_sum,y_f_prod] = SumAndProduct(Arr) %#codegen
y_f_sum = 0;
y_f_prod = 1;
for i = 1:length(Arr)

y_f_sum = y_f_sum+Arr(i);
end
for i = 1:length(Arr)

y_f_prod = y_f_prod*Arr(i);
end

The code generated from this MATLAB code evaluates the sum and product
in a single loop.

25-53

25 Generate Efficient and Reusable Code

Successive Matrix Operations Combined
When possible, the code generation software converts successive matrix
operations in your MATLAB code into a single loop operation in generated
code. This optimization reduces excess loop overhead involved in performing
the matrix operations in separate loops.

The following example contains code where successive matrix operations take
place. The function ManipulateMatrix multiplies every element of a matrix
Mat with a factor. To every element in the result, the function then adds a
shift :

function Res=ManipulateMatrix(Mat,factor,shift)
Res=Mat*factor;
Res=Res+shift;

end

The generated code combines the multiplication and addition into a single
loop operation.

Unreachable Code Elimination
When possible, the code generation software suppresses code generation from
unreachable procedures in your MATLAB code. For instance, if a branch
of an if/elseif/else statement is unreachable, then code is not generated
for that branch.

The following example contains unreachable code, which is eliminated during
code generation. The function SaturateValue returns a value based on the
range of its input x.

function y_b = SaturateValue(x) %#codegen
if x>0

y_b = x;
elseif x>10 %This is redundant

y_b = 10;
else

y_b = -x;
end

25-54

MATLAB® Coder™ Optimizations in Generated Code

The second branch of the if/elseif/else statement is unreachable. If the
variable x is greater than 10, it is also greater than 0. Therefore, the first
branch is executed in preference to the second branch.

MATLAB Coder does not generate code for the unreachable second branch.

25-55

25 Generate Efficient and Reusable Code

Generate Reusable Code
With MATLAB, you can generate reusable code in the following ways:

• Write reusable functions using standard MATLAB function file names
which you can call from different locations, for example, in a Simulink
model or MATLAB function library.

• Compile external functions on the MATLAB path and integrate them into
generated C code for embedded targets.

See “Resolution of Function Calls in MATLAB Generated Code” on page 13-2.

Common applications include:

• Overriding generated library function with a custom implementation.

• Implementing a reusable library on top of standard library functions that
can be used with Simulink.

• Swapping between different implementations of the same function.

25-56

Index

IndexA
arguments

limit on number for code generation from
MATLAB 13-19

B
build information

updating 24-10

C
C/C++ code generation for supported

functions 4-1
code files

packaging 19-193
porting 19-193

code generation from MATLAB
benefits of 2-2
best practices for working with variables 5-3
calling local functions 13-9
calling MATLAB functions 13-11
calling MATLAB functions using feval 13-16
characters 6-7
communications system toolbox System

objects 3-7
compilation directive %#codegen 13-8
computer vision system toolbox System

objects 3-2
converting mxArrays to known types 13-18
declaring MATLAB functions as extrinsic

functions 13-12
defining persistent variables 5-10
defining variables 5-2
defining variables by assignment 5-3
dsp system toolbox System objects 3-13
eliminating redundant copies of function

inputs 25-7
eliminating redundant copies of uninitialized

variables 5-7

how it resolves function calls 13-2
image acquisition toolbox System

objects 3-23
initializing persistent variables 5-10
inlining functions 25-9
limit on number of function arguments 13-19
phased array system toolbox System

objects 3-19
pragma 13-8
resolving extrinsic function calls during

simulation 13-16
resolving extrinsic function calls in generated

code 13-17
rules for defining uninitialized variables 5-7
setting properties of indexed variables 5-6
supported toolbox functions 13-10
using type cast operators in variable

definitions 5-6
variables, complex 6-4
when not to use 2-2
when to use 2-2
which features to use 2-4
working with mxArrays 13-17

code generation readiness 17-4
code generation report keyboard shortcuts

codegen 19-189
codegen

code generation report keyboard
shortcuts 19-189

generating code for more than one entry-point
file 19-71

global data 19-77
coder.ExternalDependency 24-3

best practices 24-4
coder.extrinsic 13-12
coder.nullcopy

uninitialized variables 5-7
coder.updateBuildInfo 24-10
comments in generated code

codegen 19-180

Index-1

Index

MATLAB Coder 19-84
communications system toolbox System objects

supported for code generation from
MATLAB 3-7

computer vision system toolbox System objects
supported for code generation from

MATLAB 3-2
configuration objects

codegen 19-30
controlling run-time checks

MATLAB Coder 22-17
cross-development

packaging files for 19-193

D
debugging run-time errors

MATLAB 18-9
defining uninitialized variables

rules 5-7
defining variables

for C/C++ code generation 5-3
design considerations

when writing MATLAB Code for code
generation 2-6 17-30

dsp system toolbox System objects
supported for code generation from

MATLAB 3-13

E
eliminating redundant copies of function

inputs 25-7
external code integration 24-2
external code interface

encapsulating 24-3
extrinsic functions 13-12

F
functions

limit on number of arguments for code
generation 13-19

Functions supported for C/C++ code
generation 4-1
alphabetical list 4-2
arithmetic operator functions 4-90
bit-wise operation functions 4-90
casting functions 4-91
Communications System Toolbox

functions 4-91
complex number functions 4-91
Computer Vision System Toolbox

functions 4-92
data and file management functions 4-94
data type functions 4-94
derivative and integral functions 4-95
discrete math functions 4-95
error handling functions 4-96
exponential functions 4-96
filtering and convolution functions 4-97
Fixed-Point Designer functions 4-97
histogram functions 4-106
Image Processing Toolbox functions 4-106
input and output functions 4-108
interpolation and computational geometry

functions 4-109
linear algebra functions 4-109
logical operator functions 4-109
MATLAB Compiler functions 4-110
MATLAB Desktop environment

functions 4-110
matrix/array functions 4-110
nonlinear numerical methods 4-114
Phased Array System Toolbox

functions 4-115
polynomial functions 4-118
programming utilities 4-118
relational operator functions 4-118
rounding and remainder functions 4-119
set functions 4-119

Index-2

Index

signal processing functions 4-120
Signal Processing Toolbox functions 4-120
special value functions 4-125
specialized math functions 4-125
statistical functions 4-126
Statistics Toolbox functions 4-126
string functions 4-132
structure functions 4-133
trigonometric functions 4-133

Functions supported for MEX and C/C++ code
generation
categorized list 4-88

G
generating code for more than one entry-point file

codegen 19-71
generating traceable code

MATLAB Coder 19-84
global data

codegen 19-77

H
how to disable run-time checks

MATLAB Coder 22-18

I
image acquisition toolbox System objects

supported for code generation from
MATLAB 3-23

indexed variables
setting properties for code generation from

MATLAB 5-6
initialization

persistent variables 5-10

M
MATLAB

debugging run-time errors 18-9
features not supported for code

generation 2-13
MATLAB code analyzer

using withMATLAB for code generation 17-4
MATLAB Coder

combining property specifications 19-60
controlling run-time checks 22-17
how to disable run-time checks 22-18
specifying build configuration

parameters 19-29
specifying general properties of primary

inputs 19-60
when to disable run-time checks 22-18

MATLAB for code generation
using the MATLAB code analyzer 17-4
variable types 5-18

MATLAB functions
and generating code for mxArrays 13-17

mxArrays
converting to known types 13-18
for code generation from MATLAB 13-17

O
optimizing generated code

unrolling for-loops 25-41

P
parfor-loops

break 22-24
broadcast variables 22-32
classification of variables 22-29
global variables 22-24
nested loops 22-23
persistent variables 22-24
reduction assignments 22-33
reduction assignments, associativity 22-37
reduction assignments, commutativity 22-37

Index-3

Index

reduction variables 22-32
return 22-24
sliced variables 22-30
temporary variables 22-38

persistent variables
defining for code generation from

MATLAB 5-10
initializing for code generation from

MATLAB 5-10
phased array system toolbox System objects

supported for code generation from
MATLAB 3-19

R
readability

codegen 19-180
MATLAB Coder 19-84

RTW.BuildInfo
updating 24-10

S
signal processing functions

for C/C++ code generation 4-120
specifying build configuration parameters

codegen 19-30
MATLAB Coder 19-29

T
traceability

codegen 19-180
MATLAB Coder 19-84

type cast operators
using in variable definitions 5-6

U
uninitialized variables

eliminating redundant copies in generated
code 5-7

V
validating code

codegen 19-180
MATLAB Coder 19-84

variable types supported for code generation
from MATLAB 5-18

variables
eliminating redundant copies in C/C++ code

generated from MATLAB 5-7
Variables

defining by assignment for code generation
from MATLAB 5-3

defining for code generation from
MATLAB 5-2

W
when to disable run-time checks

MATLAB Coder 22-18

Index-4

	toc
	Check Bug Reports for Issues and Fixes
	About MATLAB Coder
	MATLAB Coder Product Description
	Key Features

	Product Overview
	When to Use MATLAB Coder
	Code Generation for Embedded Software Applications
	Code Generation for Fixed-Point Algorithms

	Code Generation Workflow
	See Also

	Design Considerations for C/C++ Code Generation
	When to Generate Code from MATLAB Algorithms
	When Not to Generate Code from MATLAB Algorithms

	Which Code Generation Feature to Use
	Prerequisites for C/C++ Code Generation from MATLAB
	MATLAB Code Design Considerations for Code Generation
	See Also

	Expected Differences in Behavior After Compiling MATLAB Code
	Why Are There Differences?
	Character Size
	Order of Evaluation in Expressions
	Termination Behavior
	Size of Variable-Size N-D Arrays
	Size of Empty Arrays
	Floating-Point Numerical Results
	When computer hardware uses extended precision registers
	For certain advanced library functions
	For implementation of BLAS library functions
	NaN and Infinity Patterns
	Code Generation Target
	MATLAB Class Initial Values
	Variable-Size Support for Code Generation

	MATLAB Language Features Supported for C/C++ Code Generation
	MATLAB Language Features Not Supported for C/C++ Code Generation

	System Objects Supported for Code Generation
	System Objects Supported for C/C++ Code Generation
	Code Generation for System Objects
	Computer Vision System Toolbox System Objects
	Communications System Toolbox System Objects
	DSP System Toolbox System Objects
	Phased Array System Toolbox System Objects
	Image Acquisition Toolbox System Objects

	Functions Supported for Code Generation
	Functions Supported for C/C++ Code Generation — Alphabetical Lis
	Functions Supported for C/C++ Code Generation — Categorical List
	Aerospace Toolbox Functions
	Arithmetic Operator Functions
	Bit-Wise Operation Functions
	Casting Functions
	Communications System Toolbox Functions
	Complex Number Functions
	Computer Vision System Toolbox Functions
	Data and File Management Functions
	Data Type Functions
	Derivative and Integral Functions
	Discrete Math Functions
	Error Handling Functions
	Exponential Functions
	Filtering and Convolution Functions
	Fixed-Point Designer Functions
	Histogram Functions
	Image Processing Toolbox Functions
	Input and Output Functions
	Interpolation and Computational Geometry Functions
	Linear Algebra
	Logical Operator Functions
	MATLAB Compiler Functions
	MATLAB Desktop Environment Functions
	Matrix and Array Functions
	Nonlinear Numerical Methods
	Phased Array System Toolbox Functions
	Polynomial Functions
	Programming Utilities
	Relational Operator Functions
	Rounding and Remainder Functions
	Set Functions
	Signal Processing Functions in MATLAB
	Signal Processing Toolbox Functions
	Special Values
	Specialized Math
	Statistical Functions
	Statistics Toolbox Functions
	String Functions
	Structure Functions
	Trigonometric Functions

	Defining MATLAB Variables for C/C++ Code Generation
	Variables Definition for Code Generation
	Best Practices for Defining Variables for C/C++ Code Generation
	Define Variables By Assignment Before Using Them
	Defining a Variable for Multiple Execution Paths
	Defining Fields in a Structure
	Use Caution When Reassigning Variables
	Use Type Cast Operators in Variable Definitions
	Define Matrices Before Assigning Indexed Variables

	Eliminate Redundant Copies of Variables in Generated Code
	When Redundant Copies Occur
	How to Eliminate Redundant Copies by Defining Uninitialized Vari
	What happens if you access uninitialized data?
	Defining Uninitialized Variables

	Reassignment of Variable Properties
	Dynamically sized variables
	Variables reused in the code for different purposes
	Define and Initialize Persistent Variables
	Reuse the Same Variable with Different Properties
	When You Can Reuse the Same Variable with Different Properties
	When You Cannot Reuse Variables
	Variable Reuse in an if Statement
	Limitations of Variable Reuse

	Avoid Overflows in for-Loops
	Supported Variable Types

	Defining Data for Code Generation
	Data Definition for Code Generation
	Code Generation for Complex Data
	Restrictions When Defining Complex Variables
	Expressions With Complex Operands Yield Complex Results

	Code Generation for Characters

	Code Generation for Variable-Size Data
	What Is Variable-Size Data?
	Variable-Size Data Definition for Code Generation
	Bounded Versus Unbounded Variable-Size Data
	Control Memory Allocation of Variable-Size Data
	Specify Variable-Size Data Without Dynamic Memory Allocation
	Fixing Upper Bounds Errors
	Specifying Upper Bounds for Variable-Size Data
	When to Specify Upper Bounds for Variable-Size Data
	Specifying Upper Bounds on the Command Line for Variable-Size In
	Specifying Unknown Upper Bounds for Variable-Size Inputs
	Specifying Upper Bounds for Local Variable-Size Data
	Using a Matrix Constructor with Nonconstant Dimensions

	Variable-Size Data in Code Generation Reports
	What Reports Tell You About Size
	How Size Appears in Code Generation Reports
	How to Generate a Code Generation Report

	Define Variable-Size Data for Code Generation
	When to Define Variable-Size Data Explicitly
	Using a Matrix Constructor with Nonconstant Dimensions
	Inferring Variable Size from Multiple Assignments
	Inferring Upper Bounds from Multiple Definitions with Different

	Defining Variable-Size Data Explicitly Using coder.varsize
	Specifying Which Dimensions Vary
	Allowing a Variable to Grow After Defining Fixed Dimensions
	Defining Variable-Size Matrices with Singleton Dimensions
	Defining Variable-Size Structure Fields

	C Code Interface for Arrays
	C Code Interface for Statically Allocated Arrays
	C Code Interface for Dynamically Allocated Arrays
	emxArray Structure Definition
	C Code Interface for Structure Fields

	Utility Functions for Creating emxArray Data Structures

	Diagnose and Fix Variable-Size Data Errors
	Diagnosing and Fixing Size Mismatch Errors
	Assigning Variable-Size Matrices to Fixed-Size Matrices
	Empty Matrix Reshaped to Match Variable-Size Specification
	Performing Binary Operations on Fixed and Variable-Size Operands
	Diagnosing and Fixing Errors in Detecting Upper Bounds
	Using Nonconstant Dimensions in a Matrix Constructor

	Incompatibilities with MATLAB in Variable-Size Support for Code
	Incompatibility with MATLAB for Scalar Expansion
	Workaround

	Incompatibility with MATLAB in Determining Size of Variable-Size
	Workarounds

	Incompatibility with MATLAB in Determining Size of Empty Arrays
	Workaround

	Incompatibility with MATLAB in Determining Class of Empty Arrays
	Workaround

	Incompatibility with MATLAB in Vector-Vector Indexing
	Workaround

	Incompatibility with MATLAB in Matrix Indexing Operations for Co
	Incompatibility with MATLAB in Concatenating Variable-Size Matri
	Dynamic Memory Allocation Not Supported for MATLAB Function Bloc

	Restrictions on Variable Sizing in Toolbox Functions Supported f
	Common Restrictions
	Variable-length vector restriction
	Automatic dimension restriction
	Array-to-vector restriction
	Array-to-scalar restriction

	Toolbox Functions with Variable Sizing Restrictions

	Code Generation for MATLAB Structures
	Structure Definition for Code Generation
	Structure Operations Allowed for Code Generation
	Define Scalar Structures for Code Generation
	Restriction When Using struct
	Restrictions When Defining Scalar Structures by Assignment
	Adding Fields in Consistent Order on Each Control Flow Path
	Restriction on Adding New Fields After First Use

	Define Arrays of Structures for Code Generation
	Ensuring Consistency of Fields
	Using repmat to Define an Array of Structures with Consistent Fi
	Defining an Array of Structures Using Concatenation

	Make Structures Persistent
	Index Substructures and Fields
	Reference substructure field values individually using dot notat
	Reference field values individually in structure arrays
	Do not reference fields dynamically
	Assign Values to Structures and Fields
	Field properties must be consistent across structure-to-structur
	Do not use field values as constants
	Do not assign mxArrays to structures
	Pass Large Structures as Input Parameters

	Code Generation for Enumerated Data
	Enumerated Data Definition for Code Generation
	Enumerated Types Supported for Code Generation
	Enumerated Type Based on int32
	Syntax
	Example
	How to Use

	When to Use Enumerated Data for Code Generation
	Generate Code for Enumerated Data from MATLAB Algorithms
	How to Generate Code for Enumerated Data

	Define Enumerated Data for Code Generation
	Naming Enumerated Types for Code Generation

	Instantiate Enumerated Types for Code Generation
	Operations on Enumerated Data Allowed for Code Generation
	Assignment Operator, =
	Relational Operators, < > <= >= == ~=
	Cast Operation
	Indexing Operation
	Control Flow Statements: if, switch, while

	Include Enumerated Data in Control Flow Statements
	if Statement with Enumerated Data Types
	Class Definition: sysMode
	Class Definition: LEDcolor
	MATLAB Function: displayState
	Build and Test a MEX Function for displayState

	switch Statement with Enumerated Data Types
	Class Definition: VCRState
	Class Definition: VCRButton
	MATLAB Function: VCR
	Build and Test a MEX Function for VCR

	while Statement with Enumerated Data Types
	Class Definition: State
	MATLAB Function: Setup
	Build and Test a MEX Executable for Setup

	Customize Enumerated Types Based on int32
	About Customizing Enumerated Types
	Specify a Default Enumerated Value
	Specify a Header File

	Control Names of Enumerated Type Values in Generated Code
	Change and Reload Enumerated Data Types
	Restrictions on Use of Enumerated Data in for-Loops
	Do not use enumerated data as the loop counter variable in for-
	Toolbox Functions That Support Enumerated Types for Code Generat

	Code Generation for MATLAB Classes
	MATLAB Classes Definition for Code Generation
	Language Limitations
	Code Generation Features Not Compatible with Classes
	Defining Class Properties for Code Generation
	Calls to Base Class Constructor

	Classes That Support Code Generation
	Generate Code for MATLAB Value Classes
	Generate Code for MATLAB Handle Classes and System Objects
	MATLAB Classes in Code Generation Reports
	What Reports Tell You About Classes
	How Classes Appear in Code Generation Reports
	In the MATLAB Code Tab
	In the Variables Tab
	In the Call Stack

	How to Generate a Code Generation Report

	Troubleshooting Issues with MATLAB Classes
	Class class does not have a property with name name
	Workaround

	Code Generation for Function Handles
	Function Handle Definition for Code Generation
	Define and Pass Function Handles for Code Generation
	Function Handle Limitations for Code Generation
	Function handles must be scalar values.
	You cannot use the same bound variable to reference different fu
	You cannot pass function handles to or from extrinsic functions.
	You cannot pass function handles to or from primary functions.
	You cannot view function handles from the debugger

	Defining Functions for Code Generation
	Specify Variable Numbers of Arguments
	Supported Index Expressions
	Apply Operations to a Variable Number of Arguments
	When to Force Loop Unrolling
	Using Variable Numbers of Arguments in a for-Loop
	Key Points About the Example

	Implement Wrapper Functions
	Passing Variable Numbers of Arguments from One Function to Anoth
	Key Points About the Example

	Pass Property/Value Pairs
	Variable Length Argument Lists for Code Generation
	Use variable length argument lists in top-level functions accord
	Use curly braces {} to index into the argument list
	Verify that indices can be computed at compile time
	Do not write to varargin

	Calling Functions for Code Generation
	Resolution of Function Calls in MATLAB Generated Code
	Key Points About Resolving Function Calls
	Compile Path Search Order
	When to Use the Code Generation Path

	Resolution of File Types on Code Generation Path
	Compilation Directive %#codegen
	Call Local Functions
	Call Supported Toolbox Functions
	Call MATLAB Functions
	Declaring MATLAB Functions as Extrinsic Functions
	Declaring Extrinsic Functions
	When to Use the coder.extrinsic Construct
	Rules for Extrinsic Function Declarations
	Scope of Extrinsic Function Declarations

	Calling MATLAB Functions Using feval
	How MATLAB Resolves Extrinsic Functions During Simulation
	Working with mxArrays
	Converting mxArrays to Known Types

	Restrictions on Extrinsic Functions for Code Generation
	Limit on Function Arguments

	Fixed-Point Conversion
	Convert MATLAB Code to Fixed-Point C Code
	Propose Fixed-Point Data Types Based on Simulation Ranges
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_matlab Function
	The fun_with_matlab_test Script
	Check Code Generation Readiness
	Create and set up a MATLAB Coder Project
	Define Input Types
	Fixed-Point Conversion
	Generate Fixed-Point C Code
	Optimize Fixed-Point C Code
	Propose Fixed-Point Data Types Based on Derived Ranges
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The dti Function
	The dti_test Function
	Check Code Generation Readiness
	Create and set up a MATLAB Coder Project
	Define Input Types
	Fixed-Point Conversion
	Generate Fixed-Point C Code
	Specify Type Proposal Options
	Log Data for Histogram
	View and Modify Variable Information
	View Variable Information
	Modify Variable Information
	Revert Changes
	Promote Sim Min and Sim Max Values

	Build Instrumented MEX Function
	Propose Fixed-Point Data Types
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_matlab Function
	Check Code Generation Readiness
	Create and set up a MATLAB Coder Project
	About the fun_with_matlab_test Script
	Contents of fun_with_matlab_test
	Define Input Types
	Build Instrumented MEX Function
	View Data Type Proposal Settings
	Run Simulation
	View Code Generation Report
	Next Steps
	Apply Fixed-Point Data Types
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_fi Function
	Create and set up a MATLAB Coder Project
	Define Input Types
	The fun_with_fi_test Script
	Run Simulation
	Modify Data Type Proposal Settings
	Modify Instrumentation Report Settings
	Automated Fixed-Point Conversion
	License Requirements
	Fixed-Point Conversion Capabilities
	Fixed-Point Conversion Limitations

	Code Coverage
	Proposing Data Types
	Running a Simulation
	Computing Derived Ranges

	Viewing Functions
	Viewing Variables
	Histogram
	Function Replacements
	Validating Types
	Testing Numerics

	Instrumented MEX Functions
	Generating Instrumented MEX Functions
	Merging Instrumentation Results
	Clearing Instrumentation Results
	Redirecting Entry-Point Calls to MEX Function
	Proposing Fraction Lengths
	Proposing Word Lengths

	Convert Floating-Point MATLAB Code to Fixed-Point C Code Using c
	Prerequisites
	Create a New Folder and Copy Relevant Files
	The fun_with_matlab Function
	The fun_with_matlab_test Script
	Create a Floating-Point to Fixed-Point Conversion Configuration
	Create a Code Generation Configuration Object
	Convert Floating-Point MATLAB Code to Fixed-Point Code and Gener

	Bug Reports
	Check Bug Reports for Issues and Fixes

	Setting Up a MATLAB Coder Project
	MATLAB Coder Project Set Up Workflow
	Creating a New Project
	From the MATLAB APPS Tab
	At the Command Line
	From a MATLAB Coder Project

	Opening an Existing Project
	From the MATLAB APPS Tab
	At the Command Line
	From a MATLAB Coder Project

	Adding Files to the Project
	Specifying Properties of Primary Function Inputs in a Project
	Why You Must Specify Input Properties
	See Also

	How to Specify an Input Definition in a Project

	Autodefine Input Types
	How MATLAB Coder Autodefines Input Types
	Prerequisites for Autodefining Input Types
	How to Autodefine Input Types

	Define Input Parameters by Example in a Project
	How to Define an Input Parameter by Example
	Specifying Input Parameters by Example
	Specifying an Enumerated Type Input Parameter by Example
	Specifying a Fixed-Point Input Parameter by Example

	Define or Edit Input Parameter Type in a Project
	How to Define or Edit an Input Parameter Type
	Specifying an Enumerated Type Input Parameter by Type
	Specifying a Fixed-Point Input Parameter by Type
	Specifying Structures
	Specifying Structures by Type
	How to Set Structure Properties
	How to Rename a Field in a Structure
	How to Add a Field to a Structure
	How to Insert a Field into a Structure
	How to Remove a Field from a Structure

	Define Constant Input Parameters in a Project
	Define Inputs Programmatically in the MATLAB File
	Adding Global Variables in a Project
	Specifying Global Variable Type and Initial Value in a Project
	Why Specify a Type Definition for Global Variables?
	How to Specify a Global Variable Type
	Defining a Global Variable by Example
	Defining or Editing Global Variable Type
	Defining Global Variable Initial Value
	Define Initial Value Before Defining Type
	Define Initial Value After Defining Type

	Removing Global Variables

	Specify Output File Name
	Command Line Alternative

	Specify Output File Locations
	Command Line Alternative

	Selecting Output Type
	Command Line Alternative
	Changing Output Type
	Check These MATLAB Coder Project Parameters When Changing Output
	Check These Command-Line Parameters When Changing Output Type

	Preparing MATLAB Code for C/C++ Code Generation
	Workflow for Preparing MATLAB Code for Code Generation
	See Also

	Fixing Errors Detected at Design Time
	See Also

	Using the Code Analyzer
	Check Code With the Code Analyzer
	Check Code Using the Code Generation Readiness Tool
	Run Code Generation Readiness Tool at the Command Line
	Run Code Generation Readiness Tool from the Current Folder Brows
	Run the Code Generation Readiness Tool in a Project
	See Also

	Code Generation Readiness Tool
	What Information Does the Code Generation Readiness Tool Provide
	Summary Tab
	Code Structure Tab
	Code Distribution
	Call Tree

	See Also

	Unable to Determine Code Generation Readiness
	Generate MEX Functions Using the MATLAB Coder Project Interface
	Project Workflow for Generating MEX Functions
	Generate MEX Functions Using the Project Interface
	Configure Project Settings
	See Also

	Build a MATLAB Coder Project
	Viewing Build Results
	Saving Build Results
	See Also

	See Also

	Generate MEX Functions at the Command Line
	Command-line Workflow for Generating MEX Functions
	Generate MEX Functions at the Command Line
	Generating MEX Functions at the Command Line Using codegen
	See Also

	Fix Errors Detected at Code Generation Time
	See Also

	Design Considerations When Writing MATLAB Code for Code Generati
	See Also

	Running MEX Functions
	Debugging MEX Functions

	Debugging Strategies

	Testing MEX Functions in MATLAB
	Workflow for Testing MEX Functions in MATLAB
	See Also

	Why Test MEX Functions in MATLAB?
	Running MEX Functions
	Debugging MEX Functions

	Verify MEX Functions in a Project
	Using Test Files That Call Only MATLAB Functions
	Using Test Files That Call MEX Functions

	Verify MEX Functions at the Command Line
	Debug Run-Time Errors
	Viewing Errors in the Run-Time Stack
	About the Run-Time Stack
	When to Use the Run-Time Stack

	Handling Run-Time Errors

	Generating C/C++ Code from MATLAB Code
	Code Generation Workflow
	See Also

	C/C++ Code Generation
	Specify Custom Files to Build

	Generating C/C++ Static Libraries from MATLAB Code
	Generate a C Static Library Using the Project Interface
	Generate a C Static Library at the Command Line

	Generating C/C++ Dynamically Linked Libraries from MATLAB Code
	Dynamic Libraries Generated by MATLAB Coder
	Generate a C Dynamically Linked Library (DLL) Using the Project
	Generate a C Dynamic Library at the Command Line

	Generating Standalone C/C++ Executables from MATLAB Code
	Generate a C Executable Using the Project Interface
	See Also

	Generate a C Executable at the Command Line
	Specifying main Functions for C/C++ Executables
	Specify main Functions
	Specifying main Functions in the Project Settings Dialog Box
	Specifying main Functions at the Command Line

	Build Setting Configuration
	Specify Output Type
	Output Types
	Location of Generated Files
	Specifying the Output Type Using the MATLAB Coder Project Interf
	Specifying the Output Type at the Command Line

	Specify a Language for Code Generation
	Specifying a Language for Code Generation in the Project Setting
	Specifying a Language for Code Generation at the Command Line

	Specify Data Type Used in Generated Code
	Specify Data Type in the Project Settings Dialog Box
	Specify Data Type at the Command Line

	Specify Output File Name
	Specify Output File Name in a Project
	Command Line Alternative

	Specify Output File Locations
	Specifying Output File Location in a Project
	Command Line Alternative

	Parameter Specification Methods
	Specify Build Configuration Parameters
	Specifying Build Configuration Parameters in the Project Setting
	Specifying Build Configuration Parameters at the Command Line Us
	Save a configuration object to a MAT-file and then load the MAT-
	Write a script that creates the configuration object and sets it

	Specifying Build Configuration Parameters at the Command Line Us

	Share Build Configuration Settings
	Export Settings
	Import Settings
	See Also

	Primary Function Input Specification
	Why You Must Specify Input Properties
	Properties to Specify
	Default Property Values
	Supported Classes

	Rules for Specifying Properties of Primary Inputs
	Methods for Defining Properties of Primary Inputs
	Define Input Properties by Example at the Command Line
	Command Line Option -args
	Rules for Using the -args Option
	Specifying Properties of Primary Inputs by Example at the Comman
	Specifying Properties of Primary Fixed-Point Inputs by Example a

	Specify Constant Inputs at the Command Line
	Calling Functions with Constant Inputs
	Specifying a Structure as a Constant Input

	Specify Variable-Size Inputs at the Command Line
	Specifying a Variable-Size Vector Input

	Define Input Properties Programmatically in the MATLAB File
	How to Use assert with MATLAB Coder
	Specify Any Class
	Specify fi Class
	Specify Structure Class
	Specify Fixed Size
	Specify Scalar Size
	Specify Upper Bounds for Variable-Size Inputs
	Specify Inputs with Fixed- and Variable-Size Dimensions
	Specify Size of Individual Dimensions
	Specify Real Input
	Specify Complex Input
	Specify numerictype of Fixed-Point Input
	Specify fimath of Fixed-Point Input
	Specify Multiple Properties of Input

	Rules for Using assert Function
	Specifying General Properties of Primary Inputs
	Specifying Properties of Primary Fixed-Point Inputs
	Specifying Class and Size of Scalar Structure
	Specifying Class and Size of Structure Array

	Speed Up Compilation
	Generate Code Only
	In the Project Interface
	At the Command Line

	Disable Compiler Optimization
	In the Project Interface
	At the Command Line

	Paths and File Infrastructure Setup
	Compile Path Search Order
	Specifying Folders to Search for Custom Code
	Naming Conventions
	Reserved Prefixes
	Reserved Keywords
	Conventions for Naming Generated files

	Generate Code for Multiple Entry-Point Functions
	Advantages of Generating Code for More Than One Entry-Point Func
	Generating Code for More Than One Entry-Point Function Using the
	Generating a MEX Function with Two Entry-Point Functions Using t
	Generating a C Static Library with Two Entry-Point Functions Usi
	Generating Code for More Than One Entry-Point Function at the Co
	Generating a MEX Function with Two Entry-Point Functions at the
	Generating a C/C++ Static Library with Two Entry-Point Functions
	How to Call an Entry-Point Function in a MEX Function
	Calling an Entry-Point Function in a MEX Function
	How to Call an Entry-Point Function in a C/C++ Library Function

	Generate Code for Global Data
	Workflow
	Declare Global Variables
	Define Global Data
	Defining Global Data in the MATLAB Global Workspace
	Defining Global Data in a MATLAB Coder Project
	Defining Global Data at the Command Line

	Synchronizing Global Data with MATLAB
	Why Synchronize Global Data?
	When to Synchronize Global Data
	How to Synchronize Global Data

	Limitations of Using Global Data

	Generation of Traceable Code
	About Code Traceability
	Generate Traceable Code
	In the Project Settings Dialog Box
	At the Command Line

	Format of Traceability Tags
	Location of Comments in Generated Code
	Straight-Line Source Code
	If Statements
	For Statements
	While Statements
	Switch Statements

	Traceability Limitations

	Generate Code for Enumerated Types
	Generate Code for Variable-Size Data
	Disable Support for Variable-Size Data
	In the Project Settings Dialog Box
	At the Command Line

	Control Dynamic Memory Allocation
	In the Project Settings Dialog Box
	At the Command Line

	Generating Code for MATLAB Functions with Variable-Size Data
	Generate Code for a MATLAB Function That Expands a Vector in a L
	About the MATLAB Function uniquetol
	Step 1: Add Compilation Directive for Code Generation
	Step 2: Address Issues Detected by the Code Analyzer
	Step 3: Generate MEX Code
	What do these command-line options mean?
	Step 4: Fix the Size Mismatch Error
	Step 5: Generate C Code
	Step 6: Change the Dynamic Memory Allocation Threshold

	Using Dynamic Memory Allocation for an "Atoms" Simulation
	Create a New Folder and Copy Relevant Files
	Run Command: Create a New Folder and Copy Relevant Files
	About the 'run_atoms' Function
	Set Up Code Generation Options
	Set Up Example Inputs
	Generate a MEX Function for Testing
	Run the MEX Function
	Run the MEX Function Again
	Generate a Standalone C Code Library
	Inspect Generated Code
	Write a C Main Function
	Create a Configuration Object for Executables
	Generate a Standalone Executable
	Run the Executable
	Fetch the State
	Render the State
	Clean Up
	Run Command: Cleanup

	Code Generation for MATLAB Classes
	How MATLAB Coder Partitions Generated Code
	Partitioning Generated Files
	How to Select the File Partitioning Method
	In the Project Settings Dialog Box
	At the Command Line

	Partitioning Generated Files with One C/C++ File Per MATLAB File
	How MATLAB Coder Partitions Entry-Point MATLAB Functions
	How MATLAB Coder Partitions Local Functions
	How MATLAB Coder Partitions Overloaded Functions

	Generated Files and Locations
	Generated Files for MEX Targets
	Generated Files for C/C++ Static Library Targets
	Generated Files for C/C++ Dynamic Library Targets
	Generated Files for C/C++ Executable Targets
	Changing Names and Locations of Generated Files

	File Partitioning and Inlining
	Tradeoffs Between File Partitioning and Inlining
	How Disabling Inlining Affects File Partitioning
	Correlating C/C++ Code with Inlined Functions
	Modifying the Inlining Threshold

	Customize the Post-Code-Generation Build Process
	Customize Build Using coder.updateBuildInfo
	Customize Build Using Post-Code-Generation Command
	Build Information Object
	Build Information Methods
	addCompileFlags
	addDefines
	addIncludeFiles
	addIncludePaths
	addLinkFlags
	addLinkObjects
	addNonBuildFiles
	addSourceFiles
	addSourcePaths
	addTMFTokens
	findIncludeFiles
	getCompileFlags
	getDefines
	getFullFileList
	getIncludeFiles
	getIncludePaths
	getLinkFlags
	getNonBuildFiles
	getSourceFiles
	getSourcePaths
	packNGo
	updateFilePathsAndExtensions
	updateFilePathsAndExtensions
	updateFileSeparator
	Write Post-Code-Generation Command
	Write Post-Code-Generation Command as a Script
	Write Post-Code-Generation Command as a Function

	Use Post-Code-Generation Command to Customize Build
	Use Post-Code-Generation Command in the Project Settings Dialog
	Use Post-Code-Generation Command at the Command Line

	Write and Use Post-Code-Generation Command at the Command Line

	Code Generation Reports
	About Code Generation Reports
	Report Generation
	Names and Locations of Code Generation Reports
	Opening Code Generation Reports
	Description of Code Generation Reports

	Enable Code Generation Reports
	How to Enable Code Generation Reports in the Project Settings Di
	How to Enable Code Generation Reports at the Command Line

	View Your MATLAB Code in a Report
	Viewing Local Functions
	Viewing Specializations
	Viewing Extrinsic Functions

	Viewing Call Stack Information
	Viewing Call Stack Information on the Call stack Tab
	Viewing Call Sites in the Callers List

	View Generated C/C++ Code in a Report
	Tracing Generated Code Back to MATLAB Source Code
	Navigating to C/C++ Code Source Files
	Viewing Type Definitions
	Viewing Custom Code

	Viewing the Build Summary Information
	View Error and Warning Messages in a Report
	Viewing Errors and Warnings in the All Messages Tab
	Viewing Error and Warning Information in Your MATLAB Code
	Viewing Compilation and Linking Errors and Warnings

	Viewing Variables in Your MATLAB Code
	Viewing Variables in the Variables Tab
	Viewing Information About Variables and Expressions in Your MATL

	Viewing Target Build Information
	Keyboard Shortcuts for the Code Generation Report
	Report Limitations
	varargin and varargout
	Loop Unrolling
	Dead Code
	Structures
	Column Headings on Variables Tab
	Multiline Matrices

	Troubleshooting
	Run-time Stack Overflow

	Package Code For Use in Other Development Environments
	When to Package Code
	Package Generated Code in a Project
	Package Generated Code at the Command Line
	Specify packNGo options
	Choose a Structure for the Zip File

	Custom Toolchain Registration
	Custom Toolchain Registration
	What Is a Custom Toolchain?
	What Is a Factory Toolchain?
	What is a Toolchain Definition?
	Key Terms
	Typical Workflow

	About coder.make.ToolchainInfo
	Create and Edit Toolchain Definition File
	Toolchain Definition File with Commentary
	Steps Involved in Writing a Toolchain Definition File
	Write a Function That Creates a ToolchainInfo Object
	Setup
	Macros
	C Compiler
	C++ Compiler
	Linker
	Archiver
	Builder
	Build Configurations

	Create and Validate ToolchainInfo Object
	Register the Custom Toolchain
	Use the Custom Toolchain
	Troubleshooting Custom Toolchain Validation
	Build Tool Command Path Incorrect
	Build Tool Not in System Path
	Tool Path Does Not Exist
	Unsupported Platform
	Toolchain is Not installed
	Project or Configuration is Using the Template Makefile
	Skipped Validation of Build Tool “Download” or “Execute”

	Deploying Generated Code
	Call a C Static Library Function from C Code
	Call a C/C++ Static Library Function from MATLAB Code
	Call Generated C/C++ Functions
	Conventions for Calling Functions in Generated Code
	How to Call C/C++ Functions from MATLAB Code
	Calling Initialize and Terminate Functions
	Calling C/C++ Functions with Multiple Outputs
	See Also

	Calling C/C++ Functions that Return Arrays
	See Also

	Use a MATLAB Coder Dynamic Library in a Simple Microsoft Visual
	Specify External File Locations
	External File Locations for External Code Integration
	Specify External Files in a Class Derived from coder.ExternalDep
	Specify External Files in MATLAB Code Using coder.updateBuildInf
	Specify External Files in the Project Settings Dialog Box
	Specify External Files at the Command Line
	Specify External Files with Configuration Objects

	Accelerating MATLAB Algorithms
	Workflow for Accelerating MATLAB Algorithms
	See Also

	Best Practices for Using MEX Functions to Accelerate MATLAB Algo
	Accelerate Code That Dominates Execution Time
	Include Loops Inside MEX Function
	Avoid Generating MEX Functions from Unsupported Functions
	Avoid Generating MEX Functions if Built-In MATLAB Functions Domi
	Minimize MEX Function Calls

	Edge Detection on Images
	Prerequisites
	Create a New Folder and Copy Relevant Files
	Run Command: Create a New Folder and Copy Relevant Files
	About the 'sobel' Function
	Generate the MEX Function
	Read in the Original Image
	Convert Image to a Grayscale Version
	Run the MEX Function (The Sobel Filter)
	Display the Result
	Generate Standalone C Code
	Inspect the Generated Function
	Cleanup
	Run Command: Cleanup
	Accelerate MATLAB Algorithms
	Modifying MATLAB Code for Acceleration
	How to Modify Your MATLAB Code for Acceleration

	Control Run-Time Checks
	Types of Run-Time Checks
	When to Disable Run-Time Checks
	How to Disable Run-Time Checks
	Disabling Run-Time Checks in the Project Settings Dialog Box
	Disabling Run-Time Checks From the Command Line

	Algorithm Acceleration Using Parallel for-loops (parfor)
	Parallel for-loops (parfor) in Generated Code
	How parfor-loops Improve Execution Speed
	When to Use parfor-loops
	When Not to Use parfor-loops
	parfor-loop Syntax
	parfor Restrictions
	Nested parfor-loops
	Break and Return statements
	Global and persistent variables
	Reductions on MATLAB classes
	Reductions on char variables
	Reductions using external C code
	Extrinsic function calls
	Inlining functions
	Unrolling loops
	varargin/varargout

	Control Compilation of parfor-loops
	When to Disable parfor

	Reduction Assignments in parfor-loops
	What are Reduction Assignments?
	Multiple Reductions in a parfor-loop

	Classification of Variables in parfor-loops
	Overview
	Sliced Variables
	Characteristics of a Sliced Variable

	Broadcast Variables
	Reduction Variables
	Rules for Reduction Variables
	Reduction Assignments, Associativity, and Commutativity of Reduc

	Temporary Variables
	Uninitialized Temporaries

	Accelerate MATLAB Algorithms That Use Parallel for-loops (parfor
	Specify Maximum Number of Threads in parfor-loops
	Troubleshooting parfor-loops
	What Causes Errors About the Use of Global Structures in Paralle
	Compiler Does Not Support OpenMP

	Accelerating Simulation of Bouncing Balls
	Prerequisites
	Create a New Folder and Copy Relevant Files
	Run Command: Create a New Folder and Copy Relevant Files
	About the 'run_balls' Function
	Generate the MEX Function
	Compare Results
	Clean Up
	Run Command: Cleanup

	Calling C/C++ Functions from Generated Code
	External Function Calls from Generated Code
	Calling External Functions from Generated Code
	Why Call External Functions from Generated Code?
	How To Call External Functions
	Pass Arguments by Reference to External Functions
	Manipulate C Data
	Declaring Opaque Data

	Call External Functions Using coder.ceval
	Workflow for Calling External Functions
	Best Practices for Calling External Code from Generated Code

	Return Multiple Values from C Functions
	How MATLAB Coder Infers C/C++ Data Types
	Mapping MATLAB Types to C/C++ Types
	Mapping 64-Bit Integer Types to C/C++
	Mapping Fixed-Point Types to C/C++
	Mapping Arrays to C/C++
	Mapping Complex Values to C/C++
	Mapping Structures to C/C++ Structures
	Mapping Strings to C/C++
	Mapping Multiword Types to C/C++

	External Code Integration
	External Code Integration for Code Generation
	Encapsulating the Interface to External Code
	Best Practices for Using coder.ExternalDependency
	Terminate Code Generation for Unsupported External Dependency
	Parameterize Methods for MATLAB and Generated Code
	Parameterize updateBuildInfo for Multiple Platforms

	Encapsulate Interface to an External C Library
	Update Build Information from MATLAB code
	Call External Functions Encapsulated by coder.ExternalDependency

	Generate Efficient and Reusable Code
	Optimization Strategies
	Modularize MATLAB Code
	Eliminate Redundant Copies of Function Inputs
	Inline Code
	Prevent Function Inlining
	Use Inlining in Control Flow Statements

	Control Inlining Using Configuration Object
	Control Size of Functions Inlined
	Control Size of Functions After Inlining
	Control Stack Size Limit on Inlined Functions

	Fold Function Calls into Constants
	Control Stack Space Usage
	Control Stack Space Usage Using Project Interface
	Control Stack Space Usage from Command Line
	Stack Allocation and Performance
	Rewrite Logical Array Indexing as a Loop
	Dynamic Memory Allocation and Performance
	When Dynamic Memory Allocation Occurs

	Minimize Dynamic Memory Allocation
	Provide Maximum Size for Variable-size Arrays
	Constrain Array Size Using assert Statements
	When Array Size Is Specified by Input Variables
	When Array Size Is Obtained from Computation Using Input Variabl
	Restrict Concatenations in a Loop Using coder.varsize with Upper
	Array size during initialization is not a compile-time constant
	Array size during initialization is a compile-time constant
	Restrict Concatenations Using coder.varsize with Upper Bounds
	Constrain Array Size When Rearranging a Matrix
	Rearrange a Matrix into Given Number of Rows
	Disable Dynamic Memory Allocation During Code Generation
	Set Dynamic Memory Allocation Threshold
	Set Dynamic Memory Allocation Threshold Using Project Interface
	Set Dynamic Memory Allocation Threshold from Command Line

	Excluding Unused Paths from Generated Code
	Prevent Code Generation for Unused Execution Paths
	Prevent Code Generation When Local Variable Controls Flow
	Prevent Code Generation When Input Variable Controls Flow

	Generate Code with Parallel for-loops (parfor)
	Minimize Redundant Operations in Loops
	Unroll for-Loops
	Limit Copying the for-loop Body in Generated Code

	Support for Integer Overflow and Non-Finites
	Disable Support for Integer Overflow
	Disable Support for Non-Finites

	Integrate Custom Code
	ExternalLib_API.m
	MATLAB Coder Optimizations in Generated Code
	Constant Folding
	Control Constant Folding

	Loop Fusion
	Successive Matrix Operations Combined
	Unreachable Code Elimination

	Generate Reusable Code

	Index

	tables
	Supported Computer Vision System Toolbox System Objects
	Supported Communications System Toolbox System Objects
	Supported DSP System Toolbox System Objects
	Supported Phased Array System Toolbox System Objects
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specifying constants
	Specify properties for each field according to its class
	Global Data Synchronization Options
	MATLAB Coder Project Settings
	Command-line Configuration Parameters for the codegen function

